Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Interactions between phosphorus availability and microbes in a wheat–maize double cropping system: a reduced fertilization scheme
YU Xiao-jing, CHEN Qi, SHI Wen-cong, GAO Zheng, SUN Xiao, DONG Jing-jing, LI Juan, WANG Heng-tao, GAO Jian-guo, LIU Zhi-guang, ZHANG Min
2022, 21 (3): 840-854.   DOI: 10.1016/S2095-3119(20)63599-7
Abstract197)      PDF in ScienceDirect      
Mechanisms controlling phosphorus (P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.  In the present study, we conducted a pot experiment for four consecutive wheat–maize seasons (2016–2018) using calcareous soils with high (30.36 mg kg–1) and low (9.78 mg kg–1) initial Olsen-P content to evaluate the effects of conventional P fertilizer application to both wheat and maize (Pwm) along with a reduced P fertilizer application only to wheat (Pw).  The microbial community structure along with soil P availability parameters and crop yield were determined.  The results showed that the Pw treatment reduces the annual P input by 33.3% without affecting the total yield for at least two consecutive years as compared with the Pwm treatment in the high Olsen-P soil.  Soil water-soluble P concentrations in the Pw treatment were similar to those in the Pwm treatment at the 12-leaf collar stage when maize requires the most P.  Furthermore, the soil P content significantly affected soil microbial communities, especially fungal communities.  Meanwhile, the relative abundances of Proteobacteria and alkaline phosphatase (ALP) activity of Pw were significantly higher (by 11.4 and 13.3%) than those of Pwm in soil with high Olsen-P.  The microfloral contribution to yield was greater than that of soil P content in soil with high Olsen-P.  Relative abundances of Bacillus and Rhizobium were enriched in the Pw treatment compared with the Pwm treatment.  Bacillus showed a significant positive correlation with acid phosphatase (ACP) activity, and Rhizobium displayed significant positive correlations with ACP and ALP in soil with high Olsen-P, which may enhance P availability.  Our findings suggested that the application of P fertilization only to wheat is practical in high P soils to ensure optimal production in the wheat and maize double cropping system and that the soil P availability and microbial community may collaborate to maintain optimal yield in a wheat–maize double cropping system.


Reference | Related Articles | Metrics