Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A new Curvularia lunata variety discovered in Huanghuaihai Region in China
CHANG Jia-ying, LIU Shu-sen, SHI Jie, GUO Ning, ZHANG Hai-jian, CHEN Jie
2020, 19 (2): 551-560.   DOI: 10.1016/S2095-3119(19)62655-9
Abstract174)      PDF in ScienceDirect      
The purpose of this study was to identify the dominant pathogens of Curvularia leaf spot and their pathogenicity variation in Huanghuaihai Region of China in recent years.  In 2013 and 2016–2017, the occurrences of Curvularia leaf spots on maize were investigated in fields located in Henan, Hebei, Shandong, and Anhui provinces, and 292 fungi were isolated from diseased leaves.  These fungal isolates were subjected to morphological identification, and 232 isolates were found to have about 70% uncurved conidia and were identified as Curvularia lunata var.  Most of the conidia of 2 representative isolates, namely, HNWB-131 and HNWB-185, were oblong with parallel septations and were distinctly different from a reference isolate CX-3.  For further determination, the internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GPDH), the large subunit (LSU), and translation elongation factor 1-alpha (EF1-α) sequences of HNWB-131, HNWB-185, and CX-3 were amplified and sequenced.  The results of sequence analysis showed that the 4 gene sequences from the 3 isolates had a similarity of more than 99% to C. lunata.  Based on the sequences of ITS and the combined data of the 4 genes, neighbor-joining trees were constructed for phylogenetic analysis.  The results indicated that these 3 isolates were clustered together with C. lunata. The expression of Clg2p and ClUrase genes in mycelia and conidia was significantly (P<0.05) higher in CX-3 than in HNWB-131 and HNWB-185.  This study found that the dominant pathogen of Curvularia leaf spot was a new variety of C. lunata with morphological variations in Huanghuaihai Region from 2013 to 2017.  The pathogenicity of the C. lunata var. was not significantly enhanced, and the expression of Clg2p and ClUrase genes of C. lunata var. was decreased.
Reference | Related Articles | Metrics
Molecular Characterization and Expression Pattern of Rheb Gene in Inner Mongolia Cashmere Goat (Capra hircus) 
ZHENG Xu, YANG Jiao-fu, WANG Xiao-jing, LIANG Yan, WU Man-lin, SHI Jie-jun, ZHANG Tao, QIN Yin, LI Shu-yu, HAO Xi-yan, WANG Zhi-gang , LIU Dong-jun
2011, 10 (9): 1452-1458.   DOI: 10.1016/S1671-2927(11)60138-7
Abstract1565)      PDF in ScienceDirect      
As one member of the Ras super family, Rheb is an upstream regulator of mTOR signaling pathway, which regulates the process of cell-growth, proliferation and differentiation. In order to study the relationship between Rheb and mTOR in Inner Mongolian Cashmere goat (Capra hircus) cells, Ras homolog enriched in brain (Rheb) gene cDNA was amplified by RT-PCR. It is 555 bp in length and includes the complete ORF encoding 184 amino acids (GenBank accession no. HM569224). The full cDNA nucleotide sequence has a 99% identity with that of sheep, 98% with cattle and 93% with human while their amino acids sequence shares identity with 98, 97 and 97% of them, correspondingly. The bioinformatics analysis showed that Rheb has a Ras family domain, two casein kinase II phosphorylation sites, two ATP/GTP-binding sites motif A (P-loop), a prenyl group binding site (CAAX box). Tissue-specific expression analysis performed by semiquantitative RT-PCR. The Rheb gene was expressed in all the tested tissues and the highest level of mRNA accumulation was detected in brain, suggesting that Rheb played an important role in goat cells.
Reference | Related Articles | Metrics