Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Karyotype establishment and development of specific molecular markers of Aegilops geniculata Roth based on SLAF-seq 
Yongfu Wang, Jianzhong Fan, Hong Zhang, Pingchuan Deng, Tingdong Li, Chunhuan Chen, Wanquan Ji, Yajuan Wang
2024, 23 (12): 3953-3965.   DOI: 10.1016/j.jia.2023.09.014
Abstract256)      PDF in ScienceDirect      

The constant evolution of pathogens poses a threat to wheat resistance against diseases, endangering food security.  Developing resistant wheat varieties is the most practical approach for circumventing this problem.  As a close relative of wheat, Aegilops geniculata, particularly accession SY159, has evolved numerous beneficial traits that could be applied to improve wheat.  In this study, we established the karyotype of SY159 by fluorescence in situ hybridization (FISH) using the oligonucleotide probes Oligo-pTa535 and Oligo-pSc119.2 and a complete set of wheat–Ae. geniculata accession TA2899 addition lines as a reference.  Using specific-locus amplified fragment sequencing (SLAF-seq) technology, 400 specific markers were established for detecting the SY159 chromosomes with efficiencies reaching 81.5%.  The SY159-specific markers were used to classify the different homologous groups of SY159 against the wheat–Ae. geniculata addition lines.  We used these specific markers on the 7Mg chromosome after classification, and successfully confirmed their suitability for studying the different chromosomes of SY159.  This study provides a foundation for accelerating the application of SY159 in genetic breeding programs designed to improve wheat. 

Reference | Related Articles | Metrics
Cytogenetic characterization and molecular marker development of a novel wheat-Thinopyrum ponticum 5E (5D) disomic substitution line with resistance to powdery mildew and stripe rust 
Xiaofang Cheng, Yi Xiao, Luhui Wang, Xiaoying Yang, Pingchuan Deng, Jixin Zhao, Changyou Wang, Chunhuan Chen, Tingdong Li, Wanquan Ji
DOI: 10.1016/j.jia.2024.04.012 Online: 10 May 2024
Abstract30)      PDF in ScienceDirect      
Thinopyrum ponticum (2n=10x=70), a wild relative of common wheat (Triticum aestivum L.), is considered an invaluable genetic resource for wheat improvement due to its abundance of genes that confer resistance to biotic and abiotic stresses.  This study focused on the CH97 line, derived from the BC1F7 progeny of a cross between wheat cv. 7182 and Th. ponticum.  Cytological evidence showed that CH97 has 42 chromosomes, forming 21 bivalents at meiotic metaphase I, with the bivalents subsequently separating and moving to opposite poles during meiotic anaphase I.  Through a combination of FISH (fluorescence in situ hybridization), GISH (genomic in situ hybridization), mc-GISH (multicolor genomic in situ hybridization), and liquid array analysis, it was determined that CH97 comprises 40 wheat chromosomes and two alien chromosomes from the Ee genome of Th. ponticum, featuring the absence of a pair of 5D chromosomes and variations in 1B, 6B, and 7B chromosomes.  These findings confirm that CH97 is a stable wheat-Th. ponticum 5E (5D) alien disomic substitution line.  Inoculation experiments revealed that CH97 exhibits high resistance to wheat powdery mildew and stripe rust throughout the growth period, in contrast to the highly susceptible common wheat parent 7182.  Compared to 7182, CH97 displayed improvements in spikelets per spike, thousand-kernel weight, and kernel length.  Additionally, utilizing SLAF-seq technology, chromosome 5E-specific molecular markers were developed and validated, achieving a 33.3% success rate, which facilitates marker-assisted selection to enhance disease resistance in wheat.  Overall, the CH97 substitution line, with its resistance to diseases and improved agronomic traits represents valuable new germplasm for wheat chromosome engineering and breeding.
Reference | Related Articles | Metrics