Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Heredity and gene mapping of a novel white stripe leaf mutant in wheat
LI Hui-juan, JIAO Zhi-xin, NI Yong-jing, JIANG Yu-mei, LI Jun-chang, PAN Chao, ZHANG Jing, SUN Yu-long, AN Jun-hang, LIU Hong-jie, LI Qiao-yun, NIU Ji-shan
2021, 20 (7): 1743-1752.   DOI: 10.1016/S2095-3119(20)63345-7
Abstract133)      PDF in ScienceDirect      
Spotted leaf (spl) mutant is a type of leaf lesion mimic mutants in plants.  We obtained some lesion mimic mutants from ethyl methane sulfonate (EMS)-mutagenized wheat (Triticum aestivum L.) cultivar Guomai 301 (wild type, WT), and one of them was named as white stripe leaf (wsl) mutant because of the white stripes on its leaves.  Here we report the heredity and gene mapping of this novel wheat mutant wsl.  There are many small scattered white stripes on the leaves of wsl throughout its whole growth period.  As the plants grew, the white stripes became more severe and the necrotic area expanded.  The mutant wsl grew only weakly before the jointing stage and gradually recovered after jointing.  The length and width of the flag leaf, spike number per plant and thousand-grain weight of wsl were significantly lower than those of the WT.  Genetic analysis indicated that the trait of white stripe leaf was controlled by a recessive gene locus, named as wsl, which was mapped on the short arm of chromosome 6B by SSR marker assay.  Four SSR markers in the F2 population of wsl×CS were linked to wsl in the order of Xgpw1079Xwmc104Xgwm508-wslXgpw7651 at 7.1, 5.2, 8.7, and 4.4 cM, respectively and three SSR markers in the F2 population of wsl×Jimai 22 were linked to wsl in the order of Xgwm508Xwmc494Xgwm518-wsl at 3.5, 1.6 and 8.2 cM, respectively.  In comparison to the reference genome sequence of Chinese Spring (CS), wsl is located in a 91-Mb region from 88 Mb (Xgwm518) to 179 Mb (Xgpw7651) on chromosome 6BS.  Mutant wsl is a novel germplasm for studying the molecular mechanism of wheat leaf development.
Reference | Related Articles | Metrics
Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP
ZHU Xin-xin, NI Yong-jing, HE Rui-shi, JIANG Yu-mei, LI Qiao-yun, NIU Ji-shan
2019, 18 (3): 532-538.   DOI: 10.1016/S2095-3119(18)61935-5
Abstract194)      PDF (333KB)(202)      
We identified a wheat (Triticum aestivum L.) multi-pistil mutant from an F2 breeding population in 2012, named 12TP (three pistils in one floret).  Genetic analysis showed that one dominant gene locus controlled the multi-pistil trait.  Using homozygous normal and multi-pistil lines (near-isogenic lines; NILs) derived from the original mutant 12TP, a simple sequence repeat (SSR) marker assay located the 12TP locus on chromosome arm 2DL.  Four SSR markers were linked to 12TP and their order was Xcfd233→Xcfd62-12TP→Xwmc41→Xcfd168 at 15.85, 10.47, 2.89, and 10.37 cM, respectively.  The average genetic expressivity of the trait ‘three pistils in one floret’ was more than 98% in seven homozygous 12TP lines; however, the average genetic expressivity in heterozygous F1 plants was about 49%.  Thus, the 12TP is a semi-dominant gene locus, which differ from all previously reported multi-pistil mutants.  Mutant 12TP is a new useful germplasm for study of wheat floral development and for breeding of high yield wheat. 
 
Reference | Related Articles | Metrics