Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain
HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan
2022, 21 (9): 2559-2576.   DOI: 10.1016/j.jia.2022.07.009
Abstract220)      PDF in ScienceDirect      
Inappropriate tillage practices and nitrogen (N) management have become seriously limitations for maize (Zea mays L.) yield and N use efficiency (NUE) in the North China Plain (NCP).  In the current study, we examined the effects of strip deep rotary tillage (ST) combined with controlled-release (CR) urea on maize yield and NUE, and determined the physiological factors involved in yield formation and N accumulation during a 2-year field experiment.  Compared with conventional rotary tillage (RT) and no-tillage (NT), ST increased the soil water content and soil mineral N content (Nmin) in the 20–40 cm soil layer due to reduction by 10.5 and 13.7% in the soil bulk density in the 0–40 cm soil layer, respectively.  Compared with the values obtained by common urea (CU) fertilization, CR increased the Nmin in the 0–40 cm soil layers by 12.4 and 10.3% at the silking and maturity stages, respectively.  As a result, root length and total N accumulation were enhanced under ST and CR urea, which promoted greater leaf area and dry matter (particularly at post-silking), eventually increasing the 1 000-kernel weight of maize.  Thus, ST increased the maize yield by 8.3 and 11.0% compared with RT and NT, respectively, whereas CR urea increased maize yield by 8.9% above the values obtained under CU.  Because of greater grain yield and N accumulation, ST combined with CR urea improved the NUE substantially.  These results show that ST coupled with CR urea is an effective practice to further increase maize yield and NUE by improving soil properties and N supply, so it should be considered for sustainable maize production in the NCP (and other similar areas worldwide).
Reference | Related Articles | Metrics
Identification of soft rot resistance loci in Brassica rapa with SNP markers
LIU Meng-yang, WU Fang, GE Yun-jia, LU Yin, ZHANG Xiao-meng, WANG Yan-hua, WANG Yang, YAN Jing-hui, SHEN Shu-xing, ZHAO Jian-jun, MA Wei
2022, 21 (8): 2253-2263.   DOI: 10.1016/S2095-3119(21)63874-1
Abstract221)      PDF in ScienceDirect      

Soft rot caused by Pectobacterium carotovorum (Pc) is a devastating disease of Brassica rapa, causing substantial reductions in crop yield and quality.  Identifying genes related to soft rot resistance is the key to solving this problem.  To characterize soft rot resistance, we screened a soft rot-susceptible Chinese cabbage (A03), a resistant pakchoi (‘Huaguan’), and a resistant mutant (sr).  An F2 population was generated by crossing susceptible Chinese cabbage A03 and resistant pakchoi ‘Huaguan’ to identify quantitative trait loci (QTLs) that confer soft rot resistance.  A high-density genetic map was constructed and the three QTLs identified contain 166 genes.  Based on available transcriptome data, we analyzed the expression of the 166 genes during an important defense regulatory period in Pc infection in both A03 and the resistant mutant sr.  Among the 166 genes, six candidate genes were related to the soft rot defense response in Brapa.  TIFY10B (JAZ2, BraA07g038660.3C) was located in the major soft rot resistance QTL, DRQTL-3 on A07, and we speculate that this gene may play an important role in the defense mechanism against soft rot in Brapa.  This study lays the foundation for further investigations on the mechanism of soft rot resistance in Brapa crops.

Reference | Related Articles | Metrics
Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs
MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei
2022, 21 (1): 170-177.   DOI: 10.1016/S2095-3119(20)63394-9
Abstract213)      PDF in ScienceDirect      
A recent breakthrough in agricultural biotechnology is the introduction of RNAi-mediated strategies in pest control.  However, the off-target effects of RNAi pest control are still not fully understood.  Here, we studied the off-target effects of two insecticidal siRNAs in both target and non-target insects.  The results revealed that off-target effects of insecticidal siRNAs occur widely in both target and non-target insects.  We classified the expression-changed genes according to their homology to the siRNA-targeted gene, related KEGG pathways with the siRNA-targeted gene and continuous matches with siRNAs.  Surprisingly, the unintended significant changes in gene expression levels did not strictly match with the number of contiguous nucleotides in the siRNAs.  As expected, the expression of small portions of the homologous and KEGG-related genes were significantly changed.  We calculated the Shannon entropy of the transcriptome profile of the insects after injecting them with insecticidal siRNAs.  Though hundreds of genes were affected in their expression levels post siRNA-treatment, the Shannon entropy of the transcriptome remained unchanged, suggesting that the transcriptome expression was balanced.  Our results provide evidence that siRNAs cross-reacted with individual genes in non-target species, but did not have significant effects on the integrity of the transcriptome profiles in either target or non-target species on a genomic scale.  The metric we proposed can be used to estimate the off-target effects of insecticidal siRNAs, which might be useful for evaluating the safety of RNAi in pest control.  
Reference | Related Articles | Metrics
Quantitative design of yield components to simulate yield formation for maize in China
HOU Hai-peng, MA Wei, Mehmood Ali NOOR, TANG Li-yuan, LI Cong-feng, DING Zai-song, ZHAO Ming
2020, 19 (3): 668-679.   DOI: 10.1016/S2095-3119(19)62661-4
Abstract152)      PDF in ScienceDirect      
Maize (Zea mays L.) stands prominently as one of the major cereal crops in China as well as in the rest of the world.  Therefore, predicting the growth and yield of maize for large areas through yield components under high-yielding environments will help in understanding the process of yield formation and yield potential under different environmental conditions.  This accurate early assessment of yield requires accuracy in the formation process of yield components as well.  In order to formulate the quantitative design for high yields of maize in China, yield performance parameters of quantitative design for high grain yields were evaluated in this study, by utilizing the yield performance equation with normalization of planting density.  Planting density was evaluated by parameters including the maximum leaf area index and the maximum leaf area per plant.  Results showed that the variation of the maximum leaf area per plant with varying plant density conformed to the Reciprocal Model, which proved to have excellent prediction with root mean square error (RMSE) value of 5.95%.  Yield model estimation depicted that the best optimal maximum leaf area per plant was 0.63 times the potential maximum leaf area per plant of hybrids.  Yield performance parameters for different yield levels were quantitatively designed based on the yield performance equation.  Through validation of the yield performance model by simulating high yields of spring maize in the Inner Mongolia Autonomous Region and Jilin Province, China, and summer maize in Shandong Province, the yield performance equation showed excellent prediction with the satisfactory mean RMSE value (7.72%) of all the parameters.  The present study provides theoretical support for the formulation of quantitative design for sustainable high yield of maize in China, through consideration of planting density normalization in the yield prediction process, providing there is no water and nutrient limitation.
Reference | Related Articles | Metrics
Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain
WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming
2020, 19 (12): 2997-3012.   DOI: 10.1016/S2095-3119(20)63213-0
Abstract112)      PDF in ScienceDirect      
Double-maize cropping system is an effective option for coping with climate change in the North China Plain.  However, the effects of changes in climate on the growth and yield of maize in the two seasons are poorly understood.  Forty-six cultivars of maize with different requirements for growing degree days (GDD), categorized as high (H), medium (M) or low (L), and three cultivar combinations for two seasons as LH (using JD27 and DMY1 from category L in the first season; and YD629 and XD22 from category H in the second season), MM (using JX1 and LC3 from category M in the first season; and ZD958 and JX1 from category M in the second season) and HL (using CD30 and QY9 from category H in the first season; and XK10 and DMY3 from category L in the second season) were tested to examine the eco-physiological determinants of maize yield from 2015 to 2017.  The correlations between the combinations of cultivars and grain yield were examined.  The combination LH produced the highest annual grain yield and total biomass, regardless of the year.  It was followed, in decreasing order, by MM and HL.  Higher grain yield and biomass in LH were mainly due to the greater grain yield and biomass in the second season, which were influenced mainly by the lengths of the pre- and post-silking periods and the rate of plant growth (PGR).  Temperature was the primary factor that influenced dry matter accumulation.  In the first season, low temperatures during pre-silking decreased both the duration and PGR in LH, whereas high temperatures during post-silking decreased the PGR in MM and HL, resulting in no significant differences in biomass being observed among the three combinations.  In the second season, high temperatures decreased both the PGR and pre- and post-silking duration in MM and HL, and consequently, the biomass of those two combinations were lower than that in LH.  Moreover, because of lower GDD and radiation in the first season and higher grain yield in the second season, production efficiency of temperature and radiation (Ra) was the highest in LH.  More importantly, differences in temperature and radiation in the two seasons significantly affected the rate and duration of growth in maize, and thereby affecting both dry matter and grain yield.  Our study indicated that the combination of LH is the best for optimizing the double-maize system under changing climatic conditions in the North China Plain.
Reference | Related Articles | Metrics
Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario
Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman
2018, 17 (04): 726-738.   DOI: 10.1016/S2095-3119(17)61718-0
Abstract702)      PDF (3850KB)(371)      
Rice, a staple cereal crop in many parts of the world, has been confronted with multiple environmental stresses including high temperature, negatively impacts the booting as well as anthesis growth stages.  The situation is further complicated by the changing climatic conditions, resulting in gradual escalation of temperature as well as changing the rainfall pattern and frequency, thus raising a concern of food security worldwide.  The situation can be combat by developing rice varieties with excellent genetics with improved morpho-physiological, biochemical, and molecular mechanisms, together can minimize the adverse effects of heat stress.  Here, several strategies (encompassing genetic and genomic, and mechanisms involved) for mitigating the impact of high temperature on rice have been discussed.  Finally, the utilization of genomic knowledge in augmenting the conventional breeding approaches have been comprehensively elaborated to develop heat tolerant germplasm.
Reference | Related Articles | Metrics
Bacterial artificial chromosome library construction of root-knot nematode resistant pepper genotype HDA149 and identification of clones linked to Me3 resistant locus
GUO Xiao, YANG Xiao-hui, YANG Yu, MAO Zhen-chuan, LIU Feng, MA Wei-qing, XIE Bing-yan, LI Guang-cun
2017, 16 (01): 57-64.   DOI: 10.1016/S2095-3119(16)61446-6
Abstract1202)           
Pepper (Capsicum annuum. L.) is a widely cultivated vegetable crop worldwide and has the second largest planting area and the first largest vegetable output and value in China.  Pepper root-knot nematode (Meloidogyne spp.) is one of the most serious pests of pepper, which caused huge losses every year.  Previous studies showed that the Me3 gene is resistant to a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita.  HDA149, a double haploid pepper genotype, harboring the root-knot nematode resistance gene Me3, was used to construct bacterial artificial chromosome library (BAC) via the vector of CopyControlTM pCC1 in this study.  The library consists of 210 200 BAC clones and is equivalent to 5.3 pepper genomes.  The average insert size is 95 kb, and most of them are 90–120 kb; but the empty clones are less than 3%.  In order to screen the BAC library easily, 550 super pools with 384 BAC clones of each pool were further developed in this study.  Specific primers from Me3 gene locus were used for BAC library screening, and more than 20 positive BAC clones were obtained.  Then the selected positive BAC clones were analyzed by restriction enzyme digestion, BAC-end sequencing, marker development, and new positive BAC clones exploration, respectively.  Finally, the contig with total length of about 300 kb linked to the Me3 locus was constructed based on chromosome walking strategy, which made a solid foundation for the cloning of the important root-knot nematode resistance gene Me3.
Reference | Related Articles | Metrics
Effects of High-Quality Aromatic Rice Varieties on the Fitness of the Striped Stem Borer, Chilo suppressalis (Walker) in Central China
DU Xue-zhu, WANG Yong, CHEN Long-jia, PENG Chuan-hua, MA Wei-hua, LEI Chao-liang
2013, 12 (7): 1208-1214.   DOI: 10.1016/S2095-3119(13)60446-3
Abstract1944)      PDF in ScienceDirect      
The striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is a major pest of rice in China. Variation in host-plant quality may affect the body size of herbivorous insects, which in turn, can determine their lifehistory parameters such as survival, fecundity and fitness. In this study, we tested the effects of high-quality aromatic rice varieties on the fitness of SSB in China. Results showed that 1st instar larvae had higher penetrating rates and survival rates on the high-quality aromatic rice varieties (EX-1 and WX-988) than that on the non-aromatic rice varieties (EZ-5 and LYP-9). In addition, shorter developmental periods, greater female pupal weights and higher of other life-history parameters (hatching rate, pupation rate, eclosion rate and increase index) were found on the high-quality aromatic rice varieties, although only female pupal weight showed a significant difference between the two varieties. The highest dead heart rate was found on the aromatic rice variety of EX-1. These results indicate that SSB sustains a lower fitness cost when consuming the high-quality aromatic rice varieties (EX-1 and WX-988) than on the non-aromatic rice varieties (EZ-5 and LYP-9) in Central China.
Reference | Related Articles | Metrics
Responses of Detoxifying, Antioxidant and Digestive Enzyme Activities to Host Shift of Bemisia tabaci (Hemiptera: Aleyrodidae)
DENG Pan, CHEN Long-jia, ZHANG Zong-lei, LIN Ke-jian , MA Wei-hua
2013, 12 (2): 296-304.   DOI: 10.1016/S2095-3119(13)60228-2
Abstract1865)      PDF in ScienceDirect      
The polyphagous B-biotype of Bemisia tabaci (Gennadius) has demonstrated a high capacity to adapt to numerous hosts from diverse plant families. To illustrate induced responses by the host plant, biochemical research on eight plant-insect interaction correlative enzymes, representing detoxifying, antioxidant and digestive pathways, were investigated. Transferring whitefly adults to Zhongmian 23 from the pre-adapted host Zhongmian 41 induced activities of carboxylesterase (by 1.80-fold), glutathione S-transferase (by 3.79-fold), proteinase (by 1.62-fold) and amylase (by 2.41-fold) activities, but decreased polyphenol oxidase (by 1.89-fold) and peroxidase (by 1.88-fold). However, transferring whitefly adults to the favorite host abutilon from Zhongmian 41 was associated with increased activities of cytochrome P450 monooxygenase (by 1.61-fold) and amylase (by 1.42-fold), and decreased activities of polyphenol oxidase (by 2.96-fold) and peroxidase (by 2.07-fold). Our results, together with previous studies, proved that multiple pathways are involved in coping with host shifts by polyphagous herbivores, and the taxonomic status and preference of the host transferred would affect which pathway would be induced. These results would represent a key challenge in developing long-term sustainable insect control strategies.
Reference | Related Articles | Metrics
The Influence of Transgenic cry1Ab/cry1Ac, cry1C and cry2A Rice on Non- Target Planthoppers and Their Main Predators Under Field Conditions 
HAN Yu, XU Xue-liang, MA Wei-hua, YUAN Ben-qi, WANG Hui, LIU Fang-zhou, WANG Man-qun, WU
2011, 10 (11): 1739-1747.   DOI: 10.1016/S1671-2927(11)60172-7
Abstract2498)      PDF in ScienceDirect      
Transgenic Bt rice has been shown to be an effective means of controlling Lepidoptera pests of rice. However, the potential roles of transgenic rice on planthoppers and their predators need to be investigated before its commercialization. Population density, species dominance and population dynamics are important parameters of arthropods populations in field. So the impacts of three transgenic Bt rice strains expressing cry1Ab/cry1Ac, cry1C and cry2A on population density, species dominance and population dynamics of three species of planthoppers (Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus) and their three main predators (Cyrtorhinus lividipennis, Pirata subpiraticus and Theridium octomaculatum) were evaluated at three sites in Hubei Province, China, in the current study. The results showed that among three species of planthoppers, both in transgenic and non-transgenic rice field, the predominant species of planthoppers within phytophagous guild was S. furcifera at any site either growing season (46-50%). Significantly higher population density of N. lugens was observed in T2A-1 field relative to Minghui 63 field at Wuxue in 2010. The species dominance of predator, P. subpiraticus, in TT51 field was significantly higher than that in T1C-19 and T2A-1 fields in 2009 at Xiaogan site. Sampling date significantly influenced six arthropods except for P. subpiraticus in 2010. The interaction between rice strain×sampling date had no significant adverse effects on the population dynamics of three species of planthoppers and their predators, except for several individual species in 2009. The interaction among rice strain×sampling date×sampling site also had no significant effect on six arthropods except for S. furcifera in 2009. The results indicated that transgenic Bt rice expressing cry1Ab/cry1Ac, cry2A and cry1C had no significant adverse effects on the population dynamics of three planthoppers and their predators in most investigated data and sampling site.
Reference | Related Articles | Metrics