Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids
JIA Teng-jiao, LI Jing-jing, WANG Li-feng, CAO Yan-yong, MA Juan, WANG Hao, ZHANG Deng-feng, LI Hui-yong
2020, 19 (9): 2177-2187.   DOI: 10.1016/S2095-3119(19)62828-5
Abstract140)      PDF in ScienceDirect      
The vacuolar proton-pumping pyrophosphatase gene (VPP) is often used to enhance plant drought tolerance via genetic engineering.  In this study, the drought tolerance of four transgenic inbred maize lines overexpressing ZmVPP1 (PH4CV-T, PH6WC-T, Chang7-2-T, and Zheng58-T) and their transgenic hybrids was evaluated at various stages.  Under normal and drought conditions, the height and fresh weight were greater for the four transgenic inbred maize lines than for the wild-type (WT) controls at the germination and seedling stages.  Additionally, the transgenic plants exhibited enhanced photosynthetic efficiency at the seedling stage.  In irrigated and non-irrigated fields, the four transgenic lines grew normally, but with increased ear weight and yield compared with the WT plants.  Moreover, the ear weight and yield of the transgenic hybrids resulting from the PH4CV-T×PH6WC-W and Chang7-2-T×Zheng58-W crosses increased in the non-irrigated field.  Our results demonstrated that the growth and drought tolerance of four transgenic inbred maize lines with improved photosynthesis were enhanced by the overexpression of ZmVPP1.  Moreover, the Chang7-2 and PH4CV transgenic lines may be useful for future genetic improvements of maize hybrids to increase drought tolerance.
Reference | Related Articles | Metrics
Estimating distribution of water uptake with depth of winter wheat by hydrogen and oxygen stable isotopes under different irrigation depths
GUO Fei, MA Juan-juan, ZHENG Li-jian, SUN Xi-huan, GUO Xiang-hong, ZHANG Xue-lan
2016, 15 (4): 891-906.   DOI: 10.1016/S2095-3119(15)61258-8
Abstract2033)      PDF in ScienceDirect      
Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, combined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aestivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10–20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0–20 cm (57.0%) in the jointing stage; 0–40 (15.3%) and 80–180 cm (58.1%) in the heading stage; 60–80 (13.2%) and 180–220 cm (35.5%) in the filling stage; and 0–40 (46.8%) and 80–100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under Tw were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.
Reference | Related Articles | Metrics