Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids
TIAN Ji-hui, RAO Shuang, GAO Yang, LU Yang, CAI Kun-zheng
2021, 20 (9): 2450-2462.   DOI: 10.1016/S2095-3119(20)63455-4
Abstract136)      PDF in ScienceDirect      
Complex interactions based on host plant, rhizosphere microorganisms and soil microenvironment are presumed to be responsible for the suppressive properties of biochar against soil-borne diseases, although the underlying mechanisms are not well understood.  This study is designed to evaluate the efficacy of biochar amendment for controlling tomato bacterial wilt caused by Ralstonia solanacearum, and to explore the interactions between biochar-induced changes in rhizosphere compound composition, the pathogen and tomato growth.  The results showed that biochar amendment decreased disease incidence by 61–78% and simultaneously improved plant growth.  The positive ‘biochar effect’ could be associated with enhanced microbial activity and alterations in the rhizosphere organic acid and amino acid composition.  Specifically, elevated rhizosphere citric acid and lysine, but reduced salicylic acid, were induced by biochar which improved microbial activity and rendered the rhizosphere unsuitable for the development of R. solanacearum.  In addition, nutrients which were either made more available by the stimulated microbial activity or supplied by the biochar could improve plant vigor and potentially enhance tomato resistance to diseases.  Our findings highlight that biochar’s ability to control tomato bacterial wilt could be associated with the alteration of the rhizosphere organic acid and amino acid composition, however, further research is required to verify these ‘biochar effects’ in field conditions.
 
Reference | Related Articles | Metrics
Inhibitory effect of tartary buckwheat seedling extracts and associated flavonoid compounds on the polyphenol oxidase activity in potatoes (Solanum tuberosum L.)
LI Jun, WANG Hui, LU Yang, MAO Tang-fen, XIONG Jiang, HE Sheng-ling, LIU Hui
2019, 18 (9): 2173-2182.   DOI: 10.1016/S2095-3119(19)62692-4
Abstract151)      PDF in ScienceDirect      
To improve the processing quality of potatoes, phosphate buffer extract (PBE), 50% ethanol (E50), and aqueous extract (AE) of tartary buckwheat seedlings were evaluated for their ability to inhibit the enzymatic browning of potatoes.  The results suggest that all extracts of tartary buckwheat seedlings exert significant inhibitory effects on the polyphenol oxidase (PPO) activity in potatoes.  The relative concentrations required for a 50% reduction in the PPO activity (IC50) were 0.21, 0.28 and 0.41 mg mL–1, for PBE, E50 and AE, respectively.  The strongest inhibitory activity was observed for PBE, followed by E50 and AE.  Four flavone compounds in the PBE of tartary buckwheat seedlings (i.e., rutin, kaempferol-3-O-rutinoside, quercetin, and kaempferol) were identified by high-performance liquid chromatography.  These compounds were subsequently evaluated for their roles in the inhibition of PPO from potatoes using a model system.  The results indicated that rutin exhibited the highest inhibition rate on the PPO of potato.  A synergistic inhibitory effect was observed by mixing rutin, kaempferol-3-O-rutinoside, quercetin, and proteins.  The inhibitory patterns of rutin, kaempferol-3-O-rutinoside, and quercetin on the enzyme were noncompetitive and reversible, with inhibitory constants of 0.12, 0.31, and 0.40 mg mL–1, respectively.  Flavonoids from tartary buckwheat seedlings may exhibit a common mechanism with phenolic compounds, involving the blockage of the reaction of oxygen with PPO leading to the inhibition of the enzymes involved in browning.  Based on these results, extracts of tartary buckwheat seedlings can be used as potent natural inhibitors.
Related Articles | Metrics
The TRPA1 channel regulates temperature preference in the green peach aphid Myzus persicae
Lulu Yang, Tianyu Huang, Jie Shen, Bing Wang, Guirong Wang
DOI: 10.1016/j.jia.2025.02.046 Online: 25 February 2025
Abstract6)      PDF in ScienceDirect      

Transient receptor potential (TRP) channels are a class of ion channel proteins that are closely related to thermosensation in insects. They are involved in detecting the ambient temperature and play vital rolein insect survival and reproduction. In this study, we identified and cloned two variants of the TRPA subfamily gene in Myzus persicae, MperTRPA1(A) and MperTRPA1(B), and analyzed their tissue expression by real-time quantitative PCR. Subsequently, these two variants of MperTRPA1 were expressed in the Xenopus oocyte system, and their functions were investigated using the two-electrode voltage clamp technique. The role of the MperTRPA1 gene in temperature adaptation of M. persicae was further determined by RNA interference and behavioral choice assay to evaluate responses to temperature gradients. The results showed that the MperTRPA1 gene is widely expressed in tissues of M. persicae, with MperTRPA1(A) highly expressed in the mouthparts and MperTRPA1(B) mainly expressed in the antennae. The functional characterization results showed that both variants of MperTRPA1 could be activated and were not desensitizewhen the temperature increased from 20 to 45°C. The current value and thermal sensitivity (coefficient Q10 value) of MperTRPA1(B) were significantly higher than those of MperTRPA1(A). When the MperTRPA1 gene was knocked down, the behavioral preference of M. persicae for the optimal temperature was reduced and tended to be at a higher temperature, showing a shift in the temperature adaptation range compared to both the wild type and dsGFP-treated M. persicae. In summary, our results elucidated the molecular mechanism of adaptive temperature perception in M. persicae mediated by the thermal sensor MperTRPA1.

Reference | Related Articles | Metrics