Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang Province, China
LIU Xiao-ming, GU Wan-rong, LI Cong-feng, LI Jing, WEI Shi
2021, 20 (2): 511-526.   DOI: 10.1016/S2095-3119(20)63403-7
Abstract135)      PDF in ScienceDirect      
Now, lodging is a major constraint factor contributing to yield loss of maize (Zea mays L.) under high planting density. Chemical regulation and nitrogen fertilizer could effectively coordinate the relationship between stem lodging and maize yield, which significantly reduce lodging and improve the grain yield. The purpose of this study was to explore the effects of chemical regulation and different nitrogen application rates on lodging characteristics, grain filling and yield of maize under high density. For this, we established a field study during 2017 and 2018 growing seasons, with three nitrogen levels of N100 (100 kg ha–1), N200 (200 kg ha–1) and N300 (300 kg ha–1) at high planting density (90 000 plants ha–1), and applied plant growth regulator (Yuhuangjin, the mixture of 3% DTA-6 and 27% ethephon) at the 7th leaf. The results showed that chemical control increased the activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), 4-coumarate:CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD), and increased the lignin, cellulose and hemicellulose contents at the bottom of the 3rd internode, which significantly reduced the lodging percentage. The lignin-related enzyme activities, lignin, cellulose and hemicellulose contents decreased with the increase of nitrogen fertilizer, which significantly increased the lodging percentage. The 200 kg ha–1 nitrogen application and chemical control increased the number, diameter, angle, volume, and dry weight of brace roots. The 200 kg ha–1 nitrogen application and chemical control significantly increased the activities of ADP-glucose pyrophosphorylase (AGPase), soluble starch synthase (SSS) and starch branching enzyme (SBE), which promoted the starch accumulation in grains. Additional, improved the maximum grain filling rate (Vmax) and mean grain filling rate (Vm), which promoted the grain filling process, significantly increased grain weight and grain number per ear, thus increased the final yield.
Reference | Related Articles | Metrics
Effect of shade stress on lignin biosynthesis in soybean stems
LIU Wei-guo, REN Meng-lu, LIU Ting, DU Yong-li, ZHOU Tao, LIU Xiao-ming, LIU Jiang, Sajad Hussain, YANG Wen-yu
2018, 17 (07): 1594-1604.   DOI: 10.1016/S2095-3119(17)61807-0
Abstract509)      PDF in ScienceDirect      
To clarify how shade stress affects lignin biosynthesis in soybean stem, two varieties, Nandou 12 (shade tolerant) and Nan 032-4 (shade susceptible) grew under normal light and shade conditions (the photosynthetically active radiation and the ratio of red:far-red were lower than normal light condition).  Lignin accumulation, transcripts of genes involved in lignin biosynthesis, and intermediates content of lignin biosynthesis were analyzed.  Both soybean varieties suffered shade stress had increased plant heights and internode lengths, and reduced stem diameters and lignin accumulation in stems.  The expression levels of lignin-related genes were significantly influenced by shade stress, with interactions between the light environment and variety.  The gene of 3-hydroxylase (C3H), cinnamoyl-CoA reductase (CCR), caffeoyl-CoA O-methyltransferase (CCoAOMT), and peroxidase (POD) attributed to lignin biosynthesis under shade stress, and the down-regulation of these genes resulted in lower caffeic, sinapic, and ferulic acid levels, which caused a further decrease in lignin biosynthesis.  Under shade stress, the shade tolerant soybean variety (Nandou 12) showed stiffer stems, higher lignin content, and greater gene expression level and higher metabolite contents than shade susceptible one.  So these characteristics could be used for screening the shade-tolerant soybean for intercropping.
 
Reference | Related Articles | Metrics