Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021
H9N2 avian influenza virus (AIV) has widely circulated in poultry worldwide and sporadic infections in humans and mammals. During our surveillance of chicken from 2019 to 2021 in Shandong Province, China, we isolated 11 H9N2 AIVs. Phylogenetic analyses showed that the eight gene segments of the 11 isolates were closely related to several sublineages of Eurasian lineage: BJ/94-like clades (HA and NA genes), G1-like clades (PB2 and M genes), and SH/F/98-like clades (PB1, PA, NP and NS genes). The isolates showed mutation sites that preferentially bind to human-like receptors (HA) and mammalian fitness sites (PB2, PB1 and PA), as well as mutations in antigen and drug resistance sites. Moreover, studies with mice revealed four isolates with varying levels of pathogenicity. The average antibody titer of the H9N2 AIVs was 8.60 log2. Based on our results, the epidemiological surveillance of H9N2 AIVs should be strengthened.
Soft rot caused by Pectobacterium carotovorum (Pc) is a devastating disease of Brassica rapa, causing substantial reductions in crop yield and quality. Identifying genes related to soft rot resistance is the key to solving this problem. To characterize soft rot resistance, we screened a soft rot-susceptible Chinese cabbage (A03), a resistant pakchoi (‘Huaguan’), and a resistant mutant (sr). An F2 population was generated by crossing susceptible Chinese cabbage A03 and resistant pakchoi ‘Huaguan’ to identify quantitative trait loci (QTLs) that confer soft rot resistance. A high-density genetic map was constructed and the three QTLs identified contain 166 genes. Based on available transcriptome data, we analyzed the expression of the 166 genes during an important defense regulatory period in Pc infection in both A03 and the resistant mutant sr. Among the 166 genes, six candidate genes were related to the soft rot defense response in B. rapa. TIFY10B (JAZ2, BraA07g038660.3C) was located in the major soft rot resistance QTL, DRQTL-3 on A07, and we speculate that this gene may play an important role in the defense mechanism against soft rot in B. rapa. This study lays the foundation for further investigations on the mechanism of soft rot resistance in B. rapa crops.