Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Biological and molecular characterization of tomato brown rugose fruit virus and development of quadruplex RT-PCR detection
YAN Zhi-yong, ZHAO Mei-sheng, MA Hua-yu, LIU Ling-zhi, YANG Guang-ling, GENG Chao, TIAN Yan-ping, LI Xiang-dong
2021, 20 (7): 1871-1879.   DOI: 10.1016/S2095-3119(20)63275-0
Abstract192)      PDF in ScienceDirect      
Tomato brown rugose fruit virus (ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry.  So far, it has spread to 10 countries in America, Asia, and Europe.  In 2019, ToBRFV was identified in Shandong Province (ToBRFV-SD), China.  In this study, it was shown that ToBRFV-SD induced mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, and deformation, yellow spots, and brown rugose necrotic lesions on fruits.  ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102.  All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD.  The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel.  In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with tobacco mosaic virus (TMV).  Furthermore, a quadruplex RT-PCR system was developed that could differentiate ToBRFV from other economically important viruses affecting tomatoes, such as TMV, tomato mosaic virus, and tomato spotted wilt virus.  The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient and effective detection method for multiple infections, which is helpful in the management of ToBRFV.
Reference | Related Articles | Metrics
Variation of Potential Nitrification and Ammonia-Oxidizing Bacterial Community with Plant-Growing Period in Apple Orchard Soil
LIU Ling-zhi, QIN Si-jun, Lü De-guo, WANG Bing-ying , YANG Ze-yuan
2014, 13 (2): 415-425.   DOI: 10.1016/S2095-3119(13)60424-4
Abstract1782)      PDF in ScienceDirect      
In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4 +-N content, NO3 --N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the β-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NH4 +-N and NO3 --N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics.
Reference | Related Articles | Metrics