Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Variation of carbon partitioning in newly expanded maize leaves and plant adaptive growth under extended darkness
LIANG Xiao-gui, SHEN Si, GAO Zhen, ZHANG Li, ZHAO Xue, ZHOU Shun-li
2021, 20 (9): 2360-2371.   DOI: 10.1016/S2095-3119(20)63351-2
Abstract142)      PDF in ScienceDirect      
Plants must maintain a balance between their carbon (C) supply and utilization during the day–night cycle for continuous growth since C starvation often causes irreversible damage to crop production.  It is not well known how C fixation and allocation in the leaves of crops such as maize adapt to sudden environmental changes.  Here, to quantify primary C fixation and partitioning in photosynthetic maize leaves under extended darkness and to relate these factors to plant growth, maize seedlings were subjected to extended darkness (ED) for three successive days at the 6th leaf fully expanded stage (V6).  ED reduced plant growth and leaf chlorophyll levels but not the rate of net CO2 exchange.  As a result of the reduction in photoassimilates, the accumulation of starch and total soluble carbohydrates (TSC) in mature leaves also decreased under ED.  However, the percentage of the daily C fixation reserved in mature leaves increased.  These transient C pools were largely composed of TSC and were mainly used for consumption by increased nocturnal respiration rather than for transport.  As the days went on, both the amount of C accumulated and the percentage of the daily fixed C that was reserved in leaves decreased, which could be largely accounted for by the attenuated starch synthesis in all treatments.  The activities of ADP-glucose pyrophosphorylase and soluble starch synthase decreased significantly over time.  Therefore, this study concluded that both starch and TSC are involved in the coordination of the C supply and plant growth under a sudden C shortage but that they may be involved in different ways.  While the ratio of reserved C to daily fixed C increased to maintain blade function under acute C starvation, both the amount and the proportion of C reserved in mature leaves decreased as plant growth continued in order to meet the growth demands of the plant.
 
Reference | Related Articles | Metrics
A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain
ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li
2018, 17 (05): 1181-1193.   DOI: 10.1016/S2095-3119(17)61818-5
Abstract540)      PDF (1260KB)(256)      
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain (NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources.  The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency (WUE) responses to different irrigation management methods in the NCP.  The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters.  The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications (full irrigation) using historical weather data from crop seasons over 33 years (1981–2014).  The data were classified into three types according to seasonal precipitation: <100 mm, 100–140 mm, and >140 mm.  Our results showed that the grain and biomass yield, harvest index (HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation.  Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage (T3) resulted in the highest grain yield and WUE among the irrigation treatments.  Meanwhile, productivity in this treatment remained stable through different precipitation levels among years.  One irrigation at the jointing stage (T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher.  These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP.  The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.
Reference | Related Articles | Metrics