Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions
SANG Zhi-qin, ZHANG Zhan-qin, YANG Yu-xin, LI Zhi-wei, LIU Xiao-gang, XU Yunbi, LI Wei-hua
2022, 21 (9): 2477-2491.   DOI: 10.1016/j.jia.2022.07.006
Abstract309)      PDF in ScienceDirect      
Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding.  A total of 737 hybrids derived from 41 maize inbreds were evaluated over two years, with the aim of assessing the genetic diversity and their performance between heterotic groups under drought-stressed (DS) and well-watered (WW) treatments.  A total of 38 737 SNPs were employed to assess the genetic diversity.  The genetic distance (GD) between the parents ranged from 0.05 to 0.74, and the 41 inbreds were classified into five heterotic groups.  According to the hybrid performance (high yield and early maturity between heterotic groups), the heterosis and heterotic patterns of Iowa Stiff Stalk Synthetic (BSSS)×Non-Stiff Stalk (NSS), NSS×Sipingtou (SPT) and BSSS×SPT were identified to be useful options in China’s maize breeding.  The relative importance of general and specific combining abilities (GCA and SCA) suggests the importance of the additive genetic effects for grain yield traits under the WW treatment, but the non-additive effects under the DS treatment.  At least one of the parental lines with drought tolerance and a high GCA effect would be required to achieve the ideal hybrid performance under drought conditions.  GD showed a positive correlation with yield and yield heterosis in within-group hybrids over a certain range of GD.  The present investigation suggests that the heterosis is due to the combined accumulation of superior genes/alleles in parents and the optimal genetic distance between parents, and that yield heterosis under DS treatment was mainly determined by the non-additive effects.
Reference | Related Articles | Metrics
The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize
ZHANG Xu-dong, GAO Xue-chun, LI Zhi-wei, XU Lu-chun, LI Yi-bo, ZHANG Ren-he, XUE Ji-quan, GUO Dong-wei
2020, 19 (6): 1554-1564.   DOI: 10.1016/S2095-3119(19)62779-6
Abstract122)      PDF in ScienceDirect      
High-amylose maize starch has great potential for widespread industrial use due to its ability to form strong gels and film and in the food processing field, thus serving as a resistant starch source.  However, there is still a substantial shortage of high-amylose maize due to the limitation of natural germplasm resources, although the well-known amylose extender (ae) gene mutants have been found to produce high-amylose maize lines since 1948.  In this context, high-amylose maize lines (13 inbreds and 18 hybrids) originating from a natural amylose mutant in our testing field were utilized to study the correlation between amylose content (AC) and phenotypic traits (kernel morphology and endosperm glossiness), grain filling characteristics, gene expression, and amylose inheritance.  Our results showed that AC was negatively correlated with total starch content but was not correlated with grain phenotypes, such as kernel fullness, kernel morphology and endosperm glossiness.  Maize lines with higher amylose had a greater grain filling rate than that of the control (B73) during the first 20 days after pollination (DAP).  Both starch debranching enzyme (DBE) groups and starch branching enzyme IIb (SBEIIb) groups showed a greater abundance in the control (B73) than in the high-amylose maize lines.  Male parents directly predicted AC of F1, which was moderately positively correlated with the F2 generation.
 
Reference | Related Articles | Metrics