Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain
HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan
2022, 21 (9): 2559-2576.   DOI: 10.1016/j.jia.2022.07.009
Abstract222)      PDF in ScienceDirect      
Inappropriate tillage practices and nitrogen (N) management have become seriously limitations for maize (Zea mays L.) yield and N use efficiency (NUE) in the North China Plain (NCP).  In the current study, we examined the effects of strip deep rotary tillage (ST) combined with controlled-release (CR) urea on maize yield and NUE, and determined the physiological factors involved in yield formation and N accumulation during a 2-year field experiment.  Compared with conventional rotary tillage (RT) and no-tillage (NT), ST increased the soil water content and soil mineral N content (Nmin) in the 20–40 cm soil layer due to reduction by 10.5 and 13.7% in the soil bulk density in the 0–40 cm soil layer, respectively.  Compared with the values obtained by common urea (CU) fertilization, CR increased the Nmin in the 0–40 cm soil layers by 12.4 and 10.3% at the silking and maturity stages, respectively.  As a result, root length and total N accumulation were enhanced under ST and CR urea, which promoted greater leaf area and dry matter (particularly at post-silking), eventually increasing the 1 000-kernel weight of maize.  Thus, ST increased the maize yield by 8.3 and 11.0% compared with RT and NT, respectively, whereas CR urea increased maize yield by 8.9% above the values obtained under CU.  Because of greater grain yield and N accumulation, ST combined with CR urea improved the NUE substantially.  These results show that ST coupled with CR urea is an effective practice to further increase maize yield and NUE by improving soil properties and N supply, so it should be considered for sustainable maize production in the NCP (and other similar areas worldwide).
Reference | Related Articles | Metrics
Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain
LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen
2019, 18 (9): 2141-2152.   DOI: 10.1016/S2095-3119(19)62597-9
Abstract145)      PDF in ScienceDirect      
Over-use of N fertilizer in crop production has resulted in a series of environmental problems in the North China Plain (NCP).  Thus, improvement of nitrogen use efficiency (NUE) in summer maize has become an effective strategy for promoting sustainable agriculture in this region.  Using twenty maize cultivars, plant dry matter production, N absorption and accumulation, yield formation, and NUE in summer maize were investigated under three N levels in two growing seasons.  Based on their yield and yield components, these maize cultivars were categorized into four groups including efficient-efficient (EE) cultivars, high-nitrogen efficient (HNE) cultivars, low-nitrogen efficient (LNE) cultivars and nonefficient-nonefficient (NN) cultivars.  In both two seasons, the EE cultivars improved grain yield together with increased plant biomass, and enhanced accumulative amounts as well as higher average grain yields than the other cultivar groups under deficient-N conditions.  Significant correlations were observed between yield and kernel numbers (KN), dry matter (DM) amount and N accumulation at both post-silking and maturity stages.  DM and N accumulation at late growth stage (i.e., from silking to maturity) contributed largely to the enhanced yield capacity and improved NUE under N-deficient conditions.  Compared with the NN cultivars, the EE cultivars also showed increased N assimilation amount (NAA) and N remobilization content (NRC), and elevated N remobilization efficiency (NRE), NUE and nitrogen partial factor productivity (PFPN).  Our investigation has revealed N-associated physiological processes and may provide guidance for cultivation and breeding of high yield and NUE summer maize under limited N conditions in the NCP.
Reference | Related Articles | Metrics