Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon
Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang
2025, 24 (6): 2371-2388.   DOI: 10.1016/j.jia.2024.10.002
Abstract53)      PDF in ScienceDirect      

Soil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complex interactions between minerals and organics.  This study aimed to elucidate the alterations in mineralogy and soil organic carbon (SOC) following long-term green manure incorporation and the effect on soil aggregates.  Based on 5- and 36-year field experiments, surface soil samples (0–20 cm) were collected from Alfisol and Ferrisol soils subjected to rice–rice–winter fallow (CK) and rice–rice–Chinese milk vetch (MV) treatments to investigate aggregate stability, mineralogy, SOC composition, and soil microstructural characteristics.  The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol.  The phyllosilicates in Alfisol primarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides (Fed) were dominated by kaolinite.  Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction in Alfisol.  The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability (9.57–13.37%), and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol.  Backscattered electron (BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Fe oxides and kaolinite.  Moreover, the partial least path model (PLS-PM) revealed that clay content directly improved macroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels.  Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.

Reference | Related Articles | Metrics
Creation of purple leaf peanut germplasm through metabolic engineering of the betalain biosynthesis pathway
Dongxin Huai, Jie Wu, Xiaomeng Xue, Hao Liu, Nian Liu, Li Huang, Liying Yan, Yuning Chen, Xin Wang, Qianqian Wang, Yanping Kang, Zhihui Wang, Yanbin Hong, Huifang Jiang, Boshou Liao, Yong Lei
2025, 24 (4): 1606-1609.   DOI: 10.1016/j.jia.2024.09.034
Abstract111)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
A unique role of the pyrimidine de novo synthesis enzyme ODCase in Lysobacter enzymogenes
Mingming Yang, Yunxiao Tan, Jiabing Ma, Yingjia Zhao, Xia Yan, Nana Wang, Pingping Wang, Jiaqi Tan, Suilong Ai, Xiaofei Liang, Bangshuai Chang, Obadah E. A. Yousif, Chao Zhao, Bo Wang, Guoliang Qian, Lili Huang
2024, 23 (9): 3066-3077.   DOI: 10.1016/j.jia.2023.11.047
Abstract98)      PDF in ScienceDirect      
Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.  Heat-stable antifungal factor (HSAF) secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.  Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.  In this work, we demonstrate that Le0752, an orotidine-5´-phosphate decarboxylase enzyme (ODCase) catalyzing a pivotal step of the UMP de novo biosynthesis pathway, is vital for HSAF-mediated antimicrobial activities and growth of Lenzymogenes OH11, but not for twitching motility.  This gene regulates the production of HSAF by affecting the expression of lafB, a key gene in the HSAF biosynthesis operon, through the transcription factor Clp.  Interestingly, bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases, whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I, which contains most ODCases from Gram-positive bacteria, Gram-negative bacteria and cyanobacteria.  Moreover, the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.  oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.  Together, these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in Lenzymogenes, which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.
Reference | Related Articles | Metrics
Translocation and recovery of 15N-labeled N derived from the foliar uptake of 15NH3 by the greenhouse tomato (Lycopersicon esculentum Mill.)
HUANG Hui-ying, LI Huan, XIANG Dan, LIU Qing, LI Fei, LIANG Bin
2020, 19 (3): 859-865.   DOI: 10.1016/S2095-3119(19)62670-5
Abstract107)      PDF in ScienceDirect      
In order to completely evaluate ammonia emission from greenhouse vegetable fields, crop canopy absorption should not be neglected.  The foliar uptake of NH3 applied at two growth stages and the subsequent 15N-labeled N translocation to other plant components were investigated under greenhouse conditions using chambers covered with the soil of a tomato field.  Treatments comprised three NH3-N application rates (70, 140, and 210 mg/plot) using 15N-labeled ammonium sulfate.  Plants were harvested immediately after exposure for 24 h, and the total N concentrations and 15N/14N ratios were determined.  With increased NH3 concentration, total 15NH3-N absorption increased considerably, whereas the applied 15NH3-N uptake decreased gradually.  The tomato plants absorbed 33–38% and 24–31% of the 15NH3-N generated at the anthesis and fruit growth stages, respectively.  A total of 71–80% of the recovered NH3 was observed in the leaves and 20–30% of the recovered NH3 was remobilized to other components.  Among them, an average of 10% of the absorbed 15NH3-N was transferred into the tomato fruits.  All these results indicated the potential of the tested tomatoes for the foliar uptake of atmospheric 15NH3 and the distribution of 15N-labeled vegetative N among different plant components.  The results are of great importance for the complete evaluation of nitrogen use efficiency in the greenhouse tomato fields.
Reference | Related Articles | Metrics
Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress
ZHANG Yi, SHI Yu, GONG Hai-jun, ZHAO Hai-liang, LI Huan-li, HU Yan-hong, WANG Yi-chao
2018, 17 (10): 2151-2159.   DOI: 10.1016/S2095-3119(18)62038-6
Abstract695)      PDF (930KB)(1012)      
Silicon can improve drought tolerance of plants, but the mechanism still remains unclear.  Previous studies have mainly concentrated on silicon-accumulating plants, whereas less work has been conducted in silicon-excluding plants, such as tomato (Solanum lycopersicum L.).  In this study, we investigated the effects of exogenous silicon (2.5 mmol L–1) on the chlorophyll fluorescence and expression of photosynthesis-related genes in tomato seedlings (Zhongza 9) under water stress induced by 10% (w/v) polyethylene glycol (PEG-6000).  The results showed that under water stress, the growth of shoot and root was inhibited, and the chlorophyll and carotenoid concentrations were decreased, while silicon addition improved the plant growth and increased the concentrations of chlorophyll and carotenoid.  Under water sterss, chlorophyll fluorescence parameters such as PSII maximum photochemical efficiency (Fv/Fm), effective quantum efficiency, actual photochemical quantum efficiency (ФPSII), photosynthetic electron transport rate (ETR), and photochemical quenching coefficient (qP) were decreased; while these changes were reversed in the presence of added silicon.  The expressions of some photosynthesis-related genes including PetE, PetF, PsbP, PsbQ, PsbW, and Psb28 were down-regulated under water stress, and exogenous Si could partially up-regulate their expressions.  These results suggest that silicon plays a role in the alleviation of water stress by modulating some photosynthesis-related genes and regulating the photochemical process, and thus promoting photosynthesis.
 
 
Reference | Related Articles | Metrics
High-resolution mapping through whole-genome resequencing identifies two novel QTLs controlling oil content in peanut
Nian Liu, Huaiyong Luo, Li Huang, Xiaojing Zhou, Weigang Chen, Bei Wu, Jianbin Guo, Dongxin Huai, Yuning Chen, Yong Lei, Boshou Liao, Huifang Jiang
DOI: 10.1016/j.jia.2024.08.028 Online: 30 August 2024
Abstract38)      PDF in ScienceDirect      

Increasing oil content is a key objective in peanut breeding programs.  Accurate identification of quantitative trait loci (QTLs) with linked markers for oil content can greatly aid in marker-assisted selection for high-oil breeding.  In this study, a high-density bin map was constructed by resequencing a recombinant inbred line (RIL) population (ZH16×J11) consisting of 295 lines.  The bin map contained 4,212 loci and had a total length of 1,162.3 cM.  Ten QTLs for oil content were identified in six linkage groups.  Notably, two of these QTLs, qOCB03.1 and qOCB06.1, were consistently detected in a minimum of three environments and explained up to 13.62% of phenotypic variation.  They have not been reported in previous studies and thus are novel QTLs.  The combination of favorable alleles from the qOCB03.1 and qOCB06 in the RIL population could increase oil content across multiple environments from 1.50 to 2.46%.  Two InDel markers linked to qOCB03.1 and qOCB06.1 were developed and validated to be associated with oil content in another RIL population (ZH10×ICG12625) with diverse phenotypes.  Additionally, the high-resolution map allowed for the precise positioning of qOCB03.1 and qOCB06.1 within a 1.77 Mb-interval on chromosome B03 and a 1.51 Mb- interval on chromosome B06, respectively.  Annotation of genomic variants, analysis of transcriptome sequencing, and evaluation of the allelic effects in 292 peanut varieties revealed two candidate genes associated with oil content for each of the two QTLs.  The identification of candidate genes in this study can enable the map-based cloning of key genes controlling oil content in peanut.  Furthermore, these novel and stable QTLs and their tightly linked markers are valuable for marker-assisted breeding for increased oil content in peanut.

Reference | Related Articles | Metrics
Two-Component Signaling System RegAB Represses Pseudomonas syringae pv. actinidiae T3SS by Directly Binding to the promoter of hrpRS
Mengsi Zhang, Mingming Yang, Xiaoxue Zhang, Shuying Li, Shuaiwu Wang, Alex Muremi Fulano, Yongting Meng, Xihui Shen, Lili Huang, Yao Wang
DOI: 10.1016/j.jia.2024.09.028 Online: 26 September 2024
Abstract115)      PDF in ScienceDirect      

Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a significant threat to the kiwifruit industry. The two-component signaling systems (TCSs) play a crucial role in regulating the virulence of Pseudomonas syringae (P. syringae), yet their specific function in Psa remains largely unclear. In this study, we found that disrupting the TCS RegAB (encoded by Psa_802/Psa_803) resulted in a notable increase in the pathogenicity of Pseudomonas syringae pv. actinidiae M228 (Psa M228) in host plant and hypersensitive reaction (HR) in nonhost plant. Through comparative transcriptome analysis of the Psa M228 wild-type strain and the regA mutant, we identified the pivotal role of RegA/B in controlling various physiological pathways, including the Type III secretion system (T3SS), a key determinant of Psa virulence. Additionally, we discovered that the RegA does have binding sites in the promoter region of the hrpR/S, and the transcriptional level of the hrpR and other T3SS-related genes increased in the regA deletion strain relative to the Psa M228 wild-type. The DNA-binding affinity of RegA, and therefore the repressor function, is enhanced by its phosphorylation. Our findings unveil the function of TCS RegAB and the regulatory mechanism of T3SS by RegAB in Psa, highlighting the diverse functions of the RegAB system.

Reference | Related Articles | Metrics