Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus
DAI Shou-fen, CHEN Hai-xia, LI Hao-yuan, YANG Wan-jun, ZHAI Zhi, LIU Qian-yu, LI Jian, YAN Ze-hong
2022, 21 (7): 1877-1885.   DOI: 10.1016/S2095-3119(21)63651-1
Abstract196)      PDF in ScienceDirect      
This study evaluated the quality potential of seven synthetic hexaploid wheats (2n=6x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii (SHWSD).  Major quality parameters related to dough strength, gluten proteins (including high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS), gliadins), and their ratios between SHWSD and the weak gluten wheat control Chuannong 16 (CN16) were measured in at least three environments (except STD7).  The zeleny sedimentation value (ZSV), dough development time (DDT), dough stability time (DST), and farinograph quality number (FQN) of SHWSD were considered stable under different environments, with their respective ranges being 8.00–17.67 mL, 0.57–1.50 min, 0.73–1.80 min, and 9.50–27.00.  The ZSV, DDT, DST, and FQN of SHWSD were smaller than those of CN16, suggesting that SHWSD had a weaker dough strength than CN16.  Although SHWSD had a lower gluten index than CN16, its wet and dry gluten contents were similar to or even higher than those of CN16 in all environments tested.  The protein content of grains (12.81–18.21%) and flours (14.20–20.31%) in SHWSD was higher than that in CN16.  The amount of HMW-GS in SHWSD sharply decreased under the expression of fewer HMW-GS genes, and the LMW-GS, gliadins, and total glutenins were simultaneously increased in SHWSD in comparison with CN16.  Moreover, SHWSD had higher ratios of LMW-GS/glutenin and gliadin/glutenin but a lower ratio of HMW-GS/glutenin than CN16.  These results provide necessary information for the utilization of SHWSD in weak-gluten wheat breeding.
Reference | Related Articles | Metrics
Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat
CHEN Jin, PANG Dang-wei, JIN Min, LUO Yong-li, LI Hao-yu, LI Yong, WANG Zhen-lin
2020, 19 (5): 1215-1226.   DOI: 10.1016/S2095-3119(19)62679-1
Abstract137)      PDF in ScienceDirect      
In the North China Plain (NCP), soil deterioration threatens winter wheat (Triticum aestivum L.) production.  Although rotary tillage or plowing tillage are two methods commonly used in this region, research characterizing the effects of mixed tillage on soil characteristics and wheat yield has been limited.  A fixed-site field trial was carried out during 2011–2016 to examine the impacts of three tillage practices (5-year rotary tillage with maize straw removal (RT); 5-year rotary tillage with maize straw return (RS); and annual RS and with a deep plowing interval of 2 years (RS/DS)) on soil characteristics and root distribution in the plough layer.  Straw return significantly decreased soil bulk density, increased soil organic carbon (SOC) storage and SOC content, macro-aggregate proportion (R0.25) and its stability in the plough layer.  The RS/DS treatment significantly increased the SOC content, total nitrogen (TN), and root length density (RLD) in the 10–40 cm layer, and enhanced the proportion of RLD in the 20–30 and 30–40 cm layers.  In the 20–30 and 30–40 cm layers, an increase in SOC and TN could lead to higher grain production than commensurate increases in the surface layer, resulting in a sustainable increase in grain yield from the RS/DS treatment.  Thus, the RS/DS treatment could lead to high productivity of winter wheat by improving soil characteristics and root distribution at the deeper plough layer in the NCP.
Reference | Related Articles | Metrics