Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Alleviation of arsenic toxicity by phosphate is associated with its regulation of detoxification, defense, and transport gene expression in barley
Gerald Zvobgo, Jonas Lwalaba Wa Lwalaba, Tichaona Sagonda, James Mutemachani Mapodzeke, Noor Muhammad, Imran Haider Shamsi, ZHANG Guo-ping
2019, 18 (2): 381-394.   DOI: 10.1016/S2095-3119(18)61955-0
Abstract319)      PDF (3008KB)(222)      
Arsenic (As) contamination in soils has posed a severe threat to safe crop production.  The previous studies showed the antagonism between phosphorus (P) and As in plant growth and As uptake, while the mechanisms of alleviating As toxicity by P is not completely clear.  Due to the limiting P condition, it is imperative to understand how low P addition can be used to suppress arsenate As (V) uptake and the subsequent mechanisms involved.  Thus in this study we investigated the effect of P addition on As uptake, anti-oxidative enzyme activity, and anti-oxidant content, and the relative expression of transport, defense, and detoxification genes using two barley genotypes differing in As toxicity tolerance.  P addition significantly reduced As concentration in plant tissues, and caused the great changes in activities of catalase and superoxide dismutase, glutathione content, and the relative expression of examined genes when the plants of the two barley genotypes were exposed to 100 µmol L–1 As, with ZDB160 (As-tolerant) being much more affected than ZDB475 (As-sensitive).  The current results show that P addition can alleviate As toxicity by regulating the expression of As transport, defense, and detoxification genes to a greater extent in As tolerance of barley, suggesting the possibility of controlling As uptake and toxicity by applying low amount of P fertilizers in the As-contaminated soils.
Reference | Related Articles | Metrics
Detection of Tocopherol in Oilseed Rape (Brassica napus L.) Using Gas Chromatography with Flame Ionization Detector
Nazim Hussain, Zahra Jabeen, LI Yuan-long, CHEN Ming-xun, LI Zhi-lan, GUO Wan-li, Imran Haider Shamsi, CHEN Xiao-yang , JIANG Li-xi
2013, 12 (5): 803-814.   DOI: 10.1016/S2095-3119(13)60301-9
Abstract1908)      PDF in ScienceDirect      
The variation among Chinese genotypes of Brassica napus L. for seed tocopherols content and their analysis using gas chromatography has not been comprehensively reported till to date. In the present study, the tocopherol contents of four Chinese genotypes of Brassica napus L., namely, Gaoyou 605, Zhejiang 619, Zheshuang 758, and Zheshuang 72, were evaluated using three modified sample preparation protocols (P1, P2, and P3) for tocopherol extraction. These methods were distinguished as follows. Protocol one (P1) included the evaporation of solvent after extraction without silylation. Protocol two (P2) followed the direct supernatant collection after overnight extraction without drying and silylation. Protocol three (P3) included trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetamide. Genotypic comparison of tocopherol and its isoforms revealed that Gaoyou 605 was dominant over the other genotypes with (140.5±10.5), (316.2± 9.2), and (559.1± 24.3) μg g-1 of seed meal α-, γ-, and total (T-) tocopherol, respectively, and a 0.44±0.04 α- to γ-tocopherol ratio. The comparison of the sample preparation protocols, on the other hand, suggests that P3 is the most suitable method for the tocopherol extraction from Brassica oilseeds and for the analysis of tocopherols using gas chromatography flame ionization detector (GC-FID). Trimethylsilylation is the key step differentiating P3 from P1 and P2. Variations detected in tocopherol contents among the Chinese rapeseed (B. napus) genotypes signify the need to quantify a wide range of rapeseed germplasm for seed tocopherol dynamics in short and crop improvement in long.
Reference | Related Articles | Metrics