Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of diapause-associated proteins in migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea) by label-free quantification analysis
CUI Dong-nan, TU Xiong-bing, HAO Kun, Aftab Raza, CHEN Jun, Mark McNeill, ZHANG Ze-hua
2019, 18 (11): 2579-2588.   DOI: 10.1016/S2095-3119(19)62607-9
Abstract111)      PDF in ScienceDirect      
Maternal photoperiodic response is a key factor that affects offspring diapause in migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea).  Although many aspects of insect diapause have been studied, little is known about the molecular mechanisms of maternal photoperiodic response that influence diapause regulation.  To gain insight into the possible mechanisms of maternal photoperiod influence on diapause regulation, proteomics data by label-free quantification analysis were generated from non-diapause and diapause eggs.  A total of 175 proteins were differentially expressed between diapause and non-diapause eggs.  Among them, 24 proteins were upregulated, and 151 proteins were downregulated.  Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments were performed on all differentially expressed proteins (DEPs) and showed that peroxisome, insect hormone biosynthesis, and longevity regulating pathway may be related to diapause of migratory locust.  Furthermore, we used qRT-PCR to verify some results of the proteomic analysis.  Proteins such as hexamerin-like protein 4, juvenile hormone epoxide hydrolase 1
(JHEH1), cytochrome P450 and heat shock protein (HSP) 20.7 were predicted to be involved in diapause.  This study provides an important reference for future research that will explore the mechanisms of diapause induced by maternal effects in migratory locust.
Reference | Related Articles | Metrics
Transcriptomic and proteomic analysis of Locusta migratoria eggs at different embryonic stages: Comparison for diapause and non-diapause regimes
HAO Kun, WANG Jie, TU Xiong-bing, Douglas W. Whitman, ZHANG Ze-hua
2017, 16 (08): 1777-1788.   DOI: 10.1016/S2095-3119(16)61529-0
Abstract872)      PDF in ScienceDirect      
Temperate-zone insects typically survive winter by entering diapause. Although many aspects of insect diapause have been studied, the underlying molecular mechanism of insect diapause is not well understood. Here we report the results of the transcriptional and translational differences of migratory locust eggs at different embryonic states using diapause (low temperature) and non-diapause (high temperature) regimes. Compared with non-diapause eggs at 100 degree-days (N2) treatment, 29 671 transcripts and 296 proteins were differentially expressed at the diapause maintenance stage (D2).While compared with 150 degree-days (N3) treatment, 45 922 transcripts and 404 proteins were differentially expressed in the post-diapause stage (D3). Among them, 51 and 102 transcripts had concurrent transcription and translation profiles in D2 vs. N2 and D3 vs. N3 treatments, respectively. Analysis of Gene Ontology categorized these genes and proteins into three categories: biological processes, cellular components, and molecular functions. Biological pathway analysis indicated that three pathways: (1) insect hormone biosynthesis (KEGG: Map 00981), (2) the insulin signaling pathway (KEGG: Map 04910), and (3) the peroxisome proliferator-activated receptor (PPAR) signaling pathway (KEGG: Map 03320) play an important role in locust diapause regulation. Most of these transcripts and proteins were up-regulated in the diapause treatments, and were highly linked to juvenile hormone biosynthesis, insulin and PPAR signaling pathways, suggesting these three pathways may be involved in diapause and development regulation. This study demonstrates the applicability of high-throughput omics tools to identify biochemical pathways linked to diapause in locust egg development. In addition, it reveals that cellular metabolism in diapause eggs is more inactive than in non-diapause eggs, and most of the down-regulated enzymes and pathways are related to reduce energy loss.
Reference | Related Articles | Metrics