Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Inhibition of KU70 and KU80 by CRISPR interference, not NgAgo interference, increases the efficiency of homologous recombination in pig fetal fibroblasts
LI Guo-ling, QUAN Rong, WANG Hao-qiang, RUAN Xiao-fang, MO Jian-xin, ZHONG Cui-li, YANG Huaqiang, LI Zi-cong, GU Ting, LIU De-wu, WU Zhen-fang, CAI Geng-yuan, ZHANG Xian-wei
2019, 18 (2): 438-448.   DOI: 10.1016/S2095-3119(18)62150-1
Abstract276)      PDF (765KB)(580)      
Non-homologous end-joining (NHEJ) is a predominant pathway for the repair of DNA double-strand breaks (DSB).  It inhibits the efficiency of homologous recombination (HR) by competing for DSB targets.  To improve the efficiency of HR, multiple CRISPR interference (CRISPRi) and Natronobacterium gregoryi Argonaute (NgAgo) interference (NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase (PNKP), DNA ligase IV (LIG4), and NHEJ1.  Suppression of KU70 and KU80 by CRISPRi dramatically promoted (P<0.05) the efficiency of HR to 1.85- and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase (P>0.05) HR efficiency.  Interestingly, although the NgAgoi system significantly suppressed (P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve (P>0.05) HR efficiency in primary fetal fibroblasts.  Our result showed that both NgAgo and catalytically inactive Cas9 (dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo. 
Reference | Related Articles | Metrics
Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model
SUN Cheng-ming, ZHONG Xiao-chun, CHEN Chen, GU Ting, CHEN Wen
2016, 15 (7): 1638-1644.   DOI: 10.1016/S2095-3119(15)61253-9
Abstract1400)      PDF in ScienceDirect      
    Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the grassland NPP in southern China, we built a new climate productivity model, and validated the model with the measured data from different years in the past. The results showed that there was a logarithmic correlation between the grassland NPP and the mean annual temperature, and there was a linear positive correlation between the grassland NPP and the annual precipitation in southern China. All these results reached a very significant level (P<0.01). There was a good correlation between the simulated and the measured NPP, with R2 of 0.8027, reaching the very significant level. Meanwhile, both root mean square errors (RMSE) and relative root-mean-square errors (RRMSE) stayed at a relatively low level, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and from south to north, and the mean NPP was 471.62 g C m−2 from 2000 to 2011. Additionally, there was a rising trend year by year for the mean annual NPP of southern grassland and the tilt rate of the mean annual NPP was 3.49 g C m−2 yr−1 in recent 12 years. The above results provided a new method for grassland NPP estimation in southern China.
Reference | Related Articles | Metrics