Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
A study on the pathogen species and physiological races of tomato Fusarium wilt in Shanxi, China
CHANG Yin-dong, DU Bin, WANG Ling, JI Pei, XIE Yu-jie, LI Xin-feng, LI Zhi-gang, WANG Jian-ming
2018, 17 (06): 1380-1390.   DOI: 10.1016/S2095-3119(18)61983-5
Abstract488)      PDF in ScienceDirect      

In order to clarify the main pathogens of tomato Fusarium wilt in Shanxi Province, China, morphological identification, elongation factor 1 alpha (EF-1α) sequence analysis, specific primer amplification and pathogenicity tests were applied to study the isolates which were recovered from diseased plants collected from 17 different districts of Shanxi Province.  The results were as follows: 1) Through morphological and molecular identification, the following 7 species of Fusarium were identified: F. oxysporum, F. solani, F. verticillioidesF. subglutinans, F. chlamydosporum, F. sporotrichioides, and F. semitectum; 2) 56 isolates of F. oxysporum were identified using specific primer amplification, among which, 29, 5 and 6 isolates were respectively identified as F. oxysporum f. sp. lycopersici physiological race 1, race 2, and race 3; 3) pathogenicity test indicated the significant pathogenicity of F. oxysporum, F. solani, F. verticillioides, and F. subglutinans to tomato plant.  Therefore, among these 4 species confirmed as pathogenic to tomato in Shanxi, the highest isolation rate (53.3%) corresponded to F. oxysporum.  Three physiological species, race 1, race 2, and race 3 of F. oxysporum f. sp. lycopersici are detected in Shanxi, among which race 1 is the most widespread pathogen and is also considered as the predominant race.

Reference | Related Articles | Metrics
Expression and characterization of a codon-optimized butyrylcholinesterase for analysis of organophosphate insecticide residues
TIAN Jing-jing, CHEN Xiang-ning, XIE Yuan-hong, LU Yong, XU Wen-tao, XU Li, DU Bin
2016, 15 (3): 684-693.   DOI: 10.1016/S2095-3119(15)61139-X
Abstract1661)      PDF in ScienceDirect      
Organophosphate insecticide residues on vegetable, fruit, tea and even grains are primary cause of food poisoning. Organophosphate compounds can cause irreversible inhibition of the activity of acetylcholinesterase and butyrylcholinesterase (BChE, EC 3.1.1.8), which are both candidates for rapid detection of organophosphate pesticides. To develop an easy-tohandle method for detecting organophosphate pesticides using BChE, BChE from human was optimized according to the codon usage bias of Pichia pastoris and successfully expressed in P. pastoris GS115. The codon-optimized cDNA shared 37.3% of the codon identity with the native one. However, the amino acid sequence was identical to that of the native human butyrylcholinesterase gene (hBChE) as published. The ratio of guanine and cytosine in four kinds of bases ((G+C) ratio) was simultaneously increased from 40 to 47%. The recombinant hBChE expression reached a total protein concentration of 292 mg mL–1 with an activity of 14.7 U mL–1, which was purified 3.2×103-fold via nickel affinity chromatography with a yield of 68% and a specific activity of 8.1 U mg–1. Recombinant hBChE was optimally active at pH 7.4 and 50°C and exhibited high activity at a wide pH range (>60% activity at pH 4.0 to 8.0). Moreover, it had a good adaptability to high temperature (>60% activity at both 50 and 60°C up to 60 min) and good stability at 70°C. The enzyme can be activated by Li+, Co+, Zn2+ and ethylene diamine tetraacetic acid (EDTA), but inhibited by Mg2+, Mn2+, Fe2+, Ag+ and Ca2+. Na+ had little effect on its activity. The values of hBChE of the Michaelis constant (Km) and maximum reaction velocity (Vm) were 89.4 mmol L–1 and 1 721 mmol min–1 mg–1, respectively. The bimolecular rate constants (Ki) of the hBChE to four pesticides were similar with that of electric eel AChE (EeAChE) and higher than that of horse BChE (HoBChE). All values of the half maximal inhibitory concentration of a substance (IC50) for hBChE were lower than those for HoBChE, but most IC50 for hBChE were lower than those for EeAChE except dichlorvos. The applicability of the hBChE was further verified by successful detection of organophosphate insecticide residues in six kinds of vegetable samples. Thus, hBChE heterologously over-expressed by P. pastoris would provide a sufficient material for development of a rapid detection method of organophosphate on spot and produce the organophosphate detection kit.
Reference | Related Articles | Metrics