Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China

DENG Jian-yu, LAN Chen-yi-hang, ZHOU Jun-xiang, YAO Yu-bo, YIN Xiao-hui, FU Kai-yun, DING Xin-hua, GUO Wen-chao, LIU Wen, WANG Na, Fumin WANG
2023, 22 (4): 1093-1103.   DOI: 10.1016/j.jia.2022.08.042
Abstract249)      PDF in ScienceDirect      

Identifying the sex pheromone systems of local pest populations facilitates their management, especially for moth species that show significant geographic variation in sex pheromone communication.  We investigated the pheromone production and behavioral responses of the Asian corn borer (Ostrinia furnacalis Guenée; ACB) in Xinjiang, China.  The ACB produces three compounds: (Z)-12-tetradecenyl acetate (Z12-14:Ac) and (E)-12-tetradecenyl acetate (E12-14:Ac) which are two sex pheromone compounds, and n-tetradecyl acetate (14:Ac) which has variable roles in mediating behavioral responses.  The ratios of these three compounds produced in female gland are geographically distinct among different populations.  Quantitative analysis of pheromone production showed that the proportions of Z12-14:Ac in the E/Z isomers (i.e., Z and E12-14:Ac) and the proportions of 14:Ac in the ternary blend respectively averaged 60.46% (SD=5.26) and 25.00% (SD=7.37), with their probabilities normally or near-normally distributed.  Trapping experiments in a cornfield indicated that deploying the E/Z isomers and the three compounds in rubber septa close to their gland ratios yielded the most captured males, while other ratios that deviated from the gland ratios showed reduced field captures.  The ternary blend was significantly more attractive to males than the E/Z isomers in the field, indicating a functional role of 14:Ac as the third pheromone component used by the local population.  Additionally, the dose-response test demonstrated that the application of the three compounds at dosages between 200 and 350 μg attracted significantly more males compared to other dosages.  Therefore, the characterization of this local ACB pheromone system provides additional information about its geographic variation and serves as a basis for optimizing the pheromone-mediated control of this pest in Xinjiang. 

Related Articles | Metrics
OsBGLU19 and OsBGLU23 regulate disease resistance to bacterial leaf streak in rice
LI Bei-bei, LIU Ying-gao, WU Tao, WANG Ji-peng, XIE Gui-rong, CHU Zhao-hui, DING Xin-hua
2019, 18 (6): 1199-1210.   DOI: 10.1016/S2095-3119(18)62117-3
Abstract243)      PDF in ScienceDirect      
β-Glucosidase belongs to the glycoside hydrolase I family, which is widely present in multiple species and responds to various biotic and abiotic stresses. In rice, whether β-glucosidase is involved in the interaction between plants and microorganisms is not clear. In this study, we found that the expression of several genes encoding β-glucosidases, including OsBGLU19 and OsBGLU23, were upregulated after inoculation with Xanthomonas oryzae pv. oryzicola (Xoc) and downregulated after inoculation with X. oryzae pv. oryzae (Xoo). The respective insertion mutants of OsBGLU19 and OsBGLU23, bglu19 and bglu23, were more susceptible to Xoc infection. The expression of OsAOS2, a key gene in the jasmonic acid signal pathway, was dramatically downregulated after inoculation with Xoc in the bglu19 and bglu23 mutants. Simultaneously, the expression of downstream disease resistance-related genes, such as OsPR1a, OsPR5 and a key transcription factors OsWRKY72 were obviously downregulated. The resistance mediated by OsBGLU19 and OsBGLU23 to bacterial leaf streak is related to disease resistance-related genes above mentioned.
Related Articles | Metrics