Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Steam explosion of crop straws improves the characteristics of biochar as a soil amendment
CHEN Xue-jiao, LIN Qi-mei, Muhammad Rizwan, ZHAO Xiao-rong, LI Gui-tong
2019, 18 (7): 1486-1495.   DOI: 10.1016/S2095-3119(19)62573-6
Abstract161)      PDF in ScienceDirect      

 

Five crop straws (wheat, rice, maize, oil-rape, and cotton) were first steam-exploded for 2 min at 210°C, 2.5 MPa and then pyrolyzed at 500°C for 2 h.  Steam explosion (SE) induced 47–95% and 5–16% reduction of hemicellulose and cellulose, respectively, in the crop straws.  The biochars derived from SE-treated feedstocks had a lower specific surface area (SSA) and pore volume, compared to those from pristine feedstocks, with one exception that SE enhanced SSA of oil-rape straw biochar by approximately 16 times.  After SE, biochars had significant higher anion exchange capacity (AEC) (6.88–11.44 cmol kg–1) and point of zero net charges (PZNC) (pH 3.61–5.32) values.  It can thus be speculated that these biochars may have higher potential for anions adsorption.  In addition, oil-rape straw might be suitable to SE pretreatment for preparing biochar as a soil amendment and sorbent as well.  Further work is required for testing its application in soil.
 
Reference | Related Articles | Metrics
Long-term grazing exclusion influences arbuscular mycorrhizal fungi and their association with vegetation in typical steppe of Inner Mongolia, China
CHEN Xue-jiao, LIN Qi-mei, ZHAO Xiao-rong, CHEN Hao, WEN Jing, LI Ying, LI Gui-tong
2018, 17 (06): 1445-1453.   DOI: 10.1016/S2095-3119(17)61881-1
Abstract485)      PDF in ScienceDirect      
It is not certain that long-term grazing exclusion influences arbuscular mycorrhizal (AM) fungi and their association with steppe vegetation.  In this study, soil and plant samples were collected from two sites of grazing exclusion since 1983 (E83) and 1996 (E96), and one site of free-grazing (FG) in the typical steppe of Xilinguole League, Inner Mongolia, China, and assayed for soil basic physicochemical properties, AM fungal parameters, aboveground biomass and shoot phosphorus (P) uptake as well.  The results showed that long-term grazing exclusion of E83 and E96 led to less drastic seasonal changes and significant increases in spore density, hyphal length density and root colonization intensity of AM fungi and even soil alkaline phosphatase activity, by up to 300, 168, 110 and 102%, respectively, compared with those of FG site.  In addition, the total aboveground biomass and shoot P uptake of E83 and E96 were 75–992% and 58–645%, respectively, higher than those of FG.  Generally, the root colonization intensity, spore density, and hyphal length density of AM fungi were all positively correlated with the aboveground biomass and even shoot P uptake of plant.  These results may imply that grazing exclusion play a critical role in increasing the growth of AM fungi, and subsequently, may increase plant P uptake and aboveground biomass production.  Moreover, the spore density could sensitively reflect the impacts of long-term grazing exclusion on AM fungi since survival strategy of spores in soil.
 
Reference | Related Articles | Metrics