导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((CHEN Li-ping[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat
ZHAO Yu, WANG Jian-wen, CHEN Li-ping, FU Yuan-yuan, ZHU Hong-chun, FENG Hai-kuan, XU Xin-gang, LI Zhen-hai
2021, 20 (
9
): 2535-2551. DOI:
10.1016/S2095-3119(20)63379-2
Abstract
(
215
)
PDF in ScienceDirect
The nitrogen nutrition index (NNI) is a reliable indicator for diagnosing crop nitrogen (N) status. However, there is currently no specific vegetation index for the NNI inversion across multiple growth periods. To overcome the limitations of the traditional direct NNI inversion method (NNI
T1
) of the vegetation index and traditional indirect NNI inversion method (NNI
T2
) by inverting intermediate variables including the aboveground dry biomass (AGB) and plant N concentration (PNC), this study proposed a new NNI remote sensing index (NNI
RS
). A remote-sensing-based critical N dilution curve (N
c_RS
) was set up directly from two vegetation indices and then used to calculate NNIRS. Field data including AGB, PNC, and canopy hyperspectral data were collected over four growing seasons (2012–2013 (Exp.1), 2013–2014 (Exp. 2), 2014–2015 (Exp. 3), 2015–2016 (Exp. 4)) in Beijing, China. All experimental datasets were cross-validated to each of the NNI models (NNI
T1
, NNI
T2
and NNI
RS
). The results showed that: (1) the NNI
RS
models were represented by the standardized leaf area index determining index (sLAIDI) and the red-edge chlorophyll index (CI
red edge
) in the form of NNI
RS
=CI
red edge
/(a×sLAIDI
b
), where “a” equals 2.06, 2.10, 2.08 and 2.02 and “b” equals 0.66, 0.73, 0.67 and 0.62 when the modeling set data came from Exp.1/2/4, Exp.1/2/3, Exp.1/3/4, and Exp.2/3/4, respectively; (2) the NNI
RS
models achieved better performance than the other two NNI revised methods, and the ranges of
R
2
and RMSE were 0.50–0.82 and 0.12–0.14, respectively; (3) when the remaining data were used for verification, the NNI
RS
models also showed good stability, with RMSE values of 0.09, 0.18, 0.13 and 0.10, respectively. Therefore, it is concluded that the NNI
RS
method is promising for the remote assessment of crop N status.
Reference
|
Related Articles
|
Metrics
Select
Construction of
Salmonella
Pullorum ghost by co-expression of lysis gene E and the antimicrobial peptide SMAP29 and evaluation of its immune efficacy in specific-pathogen-free chicks
TIAN Qiu-feng, ZHOU Wei, SI Wei, YI Fei, HUA Xin, YUE Min, CHEN Li-ping, LIU Si-guo, YU Shen-ye
2018, 17 (
01
): 197-209. DOI:
10.1016/S2095-3119(17)61696-4
Abstract
(
664
)
PDF in ScienceDirect
In this study, a safety enhanced
Salmonella
Pullorum (
S.
Pullorum) ghost was constructed using an antimicrobial peptide gene, and evaluated for its potential as a Pullorum disease (PD) vaccine candidate. The antimicrobial peptide SMAP29 was co-expressed with lysis gene E to generate
S.
Pullorum ghosts. No viable bacteria were detectable either in the fermentation culture after induction of gene E- and SMAP29-mediated lysis for 24 h or in the lyophilized ghost products. Specific-pathogen-free (SPF) chicks were intraperitoneally immunized with ghosts at day 7 of age and no mortality, clinical symptoms or signs of PD such as anorexia, depression and diarrhea were observed. On challenge with a virulent
S.
Pullorum strain at 4 wk post-immunization, a comparatively higher level of protection was observed in the
S.
Pullorum ghost immunized chickens with a minimum of pathological lesions and bacterial loads compared to the birds in inactivated vaccine groups. In addition, immunization with the
S.
Pullorum ghosts induced a potent systemic IgG response and was associated with significantly increased levels of cytokine IFN-γ and IL-4 and relative percentages of CD4
+
and CD8
+
T lymphocytes. Our results indicate that SMAP29 can be employed as a new secondary lethal protein to enhance the safety of bacterial ghosts, and to prepare a non-living bacterial vaccine candidate that can prevent PD in chickens.
Reference
|
Related Articles
|
Metrics
Select
Morphology and glucosinolate profiles of chimeric
Brassica
and the responses of
Bemisia tabaci
in host selection, oviposition and development
LI Jun-xing, RAO Lin-li, XIE Hui, Monika Schreiner, CHEN Li-ping, LIU Yin-quan
2017, 16 (
09
): 2009-2018. DOI:
10.1016/S2095-3119(16)61617-9
Abstract
(
684
)
PDF in ScienceDirect
Plant structures and chemicals, which are developed from the shoot apical meristem (SAM), form the main barriers to insect feeding. A plant chimera containing cells of different genetic origins in the SAM will be morphologically and chemically different compared with the parents and thus may result in differential resistance to herbivores. In this study, we explore if particular elements of plant resistance are localized in one of the layers of SAM; the replacement of one cell layer in a chimera may be linked to change of a single resistance trait to herbivores. The morphology and glucosinolate profiles of two periclinal chimeras (labeled as TTC and TCC, respectively) and grafted parents tuber mustard (labeled as TTT) and red cabbage (labeled as CCC) were compared and the performance of whitefly (
Bemisia tabaci
) in host selection, oviposition preference and development were assessed under controlled conditions. Both chimeras possessed leaf trichomes as parent tuber mustard TTT, however, TTC had significantly more trichomes than TCC and parent TTT. Leaf wax content of both chimeras was intermediate between the two parents. Five aliphatic and two indole glucosinolates were detected in both chimeras, whereas three aliphatic glucosinolates (3-methyl-sulfinylpropyl, 4-methyl-sulfinylbutyl and 2-hydroxy-3-butenyl) were not detected in tuber mustard, and one aliphatic glucosinolate (3-butenyl) was not detected in red cabbage. Unexpectedly for a chimera, the quantities of two aliphatic glucosinolates (3-methyl-sulfinylpropyl and 4-methyl-sulfinylbutyl) in both TTC and TCC were 3- to 5-fold higher than parents. In olfactory preference assays, B. tabaci showed preference to CCC, followed by TCC, TTC and TTT, and number of eggs laid showed the same pattern: CCC>TCC>TTC>TTT. Interestingly, more whiteflies landed on TTT plants than the other three types in a free choice experiment and the developmental duration from egg to adult was the shortest on TTT and increased in the order TTT<TTC<TCC<CCC. Our results indicate plant defenses traits of leaf waxes, trichomes and glucosinolates are not controlled by one cell layer of SAM, but are influenced by interactions amongst cell layers. The overall findings suggest that periclinal chimera systems can be a valuable approach for the study of plant-insect interactions and may also be useful for future resistance breeding.
Reference
|
Related Articles
|
Metrics
Select
Effect of PMSG/hCG Superovulation on Mouse Embryonic Development
WU Bao-jiang, XUE Hong-yan, CHEN Li-ping, DAI Yan-feng, GUO Ji-tong, , LI Xi-he
2013, 12 (
6
): 1066-1072. DOI:
10.1016/S2095-3119(13)60325-1
Abstract
(
2628
)
PDF in ScienceDirect
Kunming mouse strain is widely used in China, and the superovulation was administrated with 10 IU PMSG combined with 10 IU hCG. In this study, the effects of the exogenous gonadotropins on superovulation of Kunming mice and embryo quality derived from the superovulated mice were assessed. Female mice at 6-8-wk old were superovulated with 0, 5, 7.5 and 10 IU PMSG/hCG and mated with male mice. The embryos were retrieved at 2.5 d post coitum. No statistic difference was observed for the number of 2-cell embryos collected per mouse between control and 5 IU PMSG/hCG treatment group, but the number significantly increased for 7.5 and 10 IU PMSG/hCG treatment group (P<0.05). The average number of 4- cell and 8-cell embryos collected from each mouse significantly differed between control and 5, 7.5, 10 IU PMSG/hCG treatment groups (P<0.05). When 8-cell embryos derived from mice administrated with 0, 5, 7.5 and 10 IU PMSG/hCG were cultured in KSOM, the blastocyst development rates were 88.1, 94.7, 96.1 and 94.3%, respectively, which were similar to control (P>0.05). This indicated that exogenous gonadotropins have no effects on development of Kunming mouse embryos. The quality of blastocyst was assessed by labelling with Hoechst and propidium iodide for inner cell mass and trophectoderm cells, the result showed that ICM/TE ratio significantly decreased for 10 IU PMSG/hCG treatment group compared with control, 5 and 7.5 IU PMSG/hCG treatment group (P<0.05). This suggested that the embryo quality of Kunming mouse has been affected by high dose of gonadotropins.
Reference
|
Related Articles
|
Metrics
Select
Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis
ZHANG Jing-cheng, YUAN Lin, WANG Ji-hua, HUANG Wen-jiang, CHEN Li-ping, ZHANG Dong-yan
2012, 12 (
9
): 1474-1484. DOI:
10.1016/S1671-2927(00)8679
Abstract
(
1611
)
PDF in ScienceDirect
Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model development. The spectral characteristics of the powdery mildew on leaf level were found to be closely related with the spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2=0.69, RRMSE=0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level.
Reference
|
Related Articles
|
Metrics