Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Blue light induces leaf color change by modulating carotenoid metabolites in orange-head Chinese cabbage (Brassica rapa L. ssp. pekinensis)
ZHANG Rui-xing, ZHANG Ni-nan, WANG Ya-xiu, Khan ABID, MA Shuai, BAI Xue, ZENG Qi, PAN Qi-ming, LI Bao-hua, ZHANG Lu-gang
2023, 22 (11): 3296-3311.   DOI: 10.1016/j.jia.2023.09.029
Abstract188)      PDF in ScienceDirect      

Carotenoids are involved in the formation of plant leaf color as well as photosystem photoprotection.  This study showed that blue light significantly induced up-regulation of the total carotenoid content in the inner leaves of orange-head Chinese cabbage (OHCC).  Furthermore, the transcriptomic analysis revealed that blue light treatment induced up-regulation of genes in photosynthesis (BrHY5-2, BrCOP1 and BrDET1) and the methylerythritol 4-phosphate pathways (BrGGPS, BrDXS and BrHDR) upstream of the carotenoid metabolic pathway.  Carotenoid metabolomic analysis revealed that the accumulation of several orange and red carotenoids (lycopene, zeaxanthin, β-carotene, lutein, and β-cryptoxanthin) after blue light treatment contributed to the deepening of the leaf coloration, suggesting that short-term blue light treatment could be used to boost nutritional quality.  The light signal gene BrHY5-2 participated in the blue light-induced transcriptional regulation of carotenoid biosynthesis in OHCC.  Overexpression of BrHY5-2 in Arabidopsis significantly increased the total carotenoid content and the sensitivity to blue light.  The above findings revealed new insights about blue-light-induced carotenoid synthesis and accumulation in OHCC lines.  They suggested a new engineering approach to increase the nutritional value of vegetables.

Reference | Related Articles | Metrics
Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population
LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi
2022, 21 (7): 2065-2075.   DOI: 10.1016/S2095-3119(21)63805-4
Abstract320)      PDF in ScienceDirect      
Improving the production of broiler chicken meat has been a goal of broiler breeding programs worldwide for many years.  However, the genetic architectures of skeletal muscle production traits in chickens have not yet been fully elucidated.  In the present study, a total of 519 F2 birds, derived from a cross of Arbor Acres broiler and Baier layer, were re-sequenced (26 F0 individuals were re-sequenced at a 10-fold depth; 519 F2 individuals were re-sequenced at a 3-fold depth) and the coupling of genome-wide association study (GWAS) and selection signatures (FST (fixation index) and θπ (nucleotide diversity)) was carried out to pinpoint the associated loci and genes that contribute to pectoral muscle weight (PMW) and thigh muscle weight (TMW).  A total of 7 890 258 single nucleotide polymorphisms (SNPs) remained to be analyzed after quality control and imputation.  The integration of GWAS and selection signature analyses revealed that genetic determinants responsible for skeletal muscle production traits were mainly localized on chromosomes 1 (168.95–172.43 Mb) and 4 (74.37–75.23 Mb).  A total of 17 positional candidate genes (PCGs) (LRCH1, CDADC1, CAB39L, LOC112531568, LOC112531569, FAM124A, FOXO1, NBEA, GPALPP1, RUBCNL, ARL11, KPNA3, LHFP, GBA3, LOC112532426, KCNIP4, and SLIT2) were identified in these regions.  In particular, KPNA3 and FOXO1 were the most promising candidates for meat production in chickens.  These findings will help enhance our understanding of the genetic architecture of chicken muscle production traits, and the significant SNPs identified could be promising candidates for integration into practical breeding programs such as genome-wide selection (GS) to improve the meat yield of chickens.


Reference | Related Articles | Metrics