棉花Cotton
本研究鉴定出棉花SLs信号传导途径基因GhMAX2,研究了其在陆地棉生长和株型形成中的作用。生物信息学分析表明GhMAX2蛋白主要由一个α-螺旋和一个无规卷曲组成,含有大量富含亮氨酸的重复序列。GhMAX2基因在根、茎、花和20天的纤维中高表达,GhMAX2启动子驱动的GUS在拟南芥根、主花序、花和角果中表达。亚细胞定位结果显示GhMAX2定位于细胞核。在拟南芥max2-1突变体中异源表达GhMAX2,可以回复至野生型的表型,表明MAX2的功能在陆地棉和拟南芥之间高度保守。此外,棉花中GhMAX2基因的敲低表达可导致植株高度降低,生长缓慢,节间缩短,纤维变短。上述结果表明,GhMAX2可能在棉花的生长、株型形成以及纤维伸长中发挥重要功能。综上,本研究主要揭示了GhMAX2介导的SL/KAR信号在棉花中的功能,为今后棉花新品种培育提供了理论依据。
本研究于2019-2020年开展了田间试验,研究DPC化控封顶时期和剂量对喷施脱叶催熟剂(50%噻苯•乙烯利悬浮剂,简称TE,2250 g hm-2)前吐絮率(9月中下旬,药前吐絮率)及TE施用后14天脱叶性状和吐絮率的影响。结果表明,2019年(棉株长势相对正常)晚封顶(T3期,接近生理终止,白花以上节位约为5.0,较当地人工打顶晚7天)与早封顶(T1期,盛花期,较当地人工打顶早7天)和中期封顶(盛花期后7天,与当地人工打顶时间相同)相比,药前吐絮率显著降低5.9%-11.2%;高剂量DPC(270 g hm-2)封顶与低(90 g hm-2)、中(180 g hm-2)剂量DPC封顶相比,药前吐絮率显著降低22.0%。2020年(棉株后期长势偏旺)T3期封顶的药前叶片数虽然少于T1期和T2期,但药后14天的残留叶片数较多,脱叶率较T1和T2期封顶降低23.2%-27.2%;高剂量DPC封顶的药前叶片数与中、低剂量DPC封顶相似,但药后14天的残留叶片数最多,脱叶率较低、中剂量DPC封顶降低15.0%-21.7%。此外,2020年晚封顶主要影响果枝叶片(包括主茎叶)的脱落,而高剂量DPC封顶对果枝叶(包括主茎叶)和营养枝叶片的脱落均有影响。综上,花铃期应用DPC进行化控封顶对棉花熟性和脱叶催熟效果有一定影响,且具体结果与植株生长状态有关。为避免延迟成熟和降低叶片对脱叶催熟剂的敏感性,DPC化控封顶时间不宜过晚,也不宜采用高剂量DPC进行封顶。在黄河流域棉区,建议于盛花期~盛花期后7天左右(当地常年人工打顶时间)应用90-180 g hm-2 DPC进行化控封顶。
打顶是棉花栽培广泛应用的农艺措施由于其无限生长的习性。在不同的打顶方法中,人工打顶似然费时费力,但在黄河流域应用较为普遍。本研究旨在研究不同打顶处理对棉花发育、产量和品质的影响。本研究为两年(2015-2016)大田实验,设置三种打顶方式:人工打顶(MT),化学打顶(CT)(缩节铵),不打顶(NT)处理。我们发现CT处理的株高、果枝数及上部果枝长度要显著低于NT处理。CT处理的叶绿素含量与NT处理相比无显著差异,在生育后期要高于MT处理。CT处理通过降低赤霉素和脱落酸含量来促进棉株发育,并且抑制了主茎的顶端发育。和MT处理相比,CT处理显著增加了营养器官的生物量。最重要的是,CT和MT处理间的产量和品质并无显著差异。上述结果表明,化学打顶是一种简便、有效的打顶方法,可在我国黄河流域代替人工打顶。
叶片的光照异质性可引起其结构与生理功能的异质性。对于单个叶片来说,其叶片不同部位的受光往往存在较大的异质性。然而,单个叶片不同部位的异质性光照如何影响其所在部位的结构与生理功能尚未明确。本研究以具有叶片翘曲特性的海岛棉为材料,开展田间原位测定和遮荫模拟试验。田间试验测定了东西南北四个方向叶片主脉两侧的光合特性和形态结构。研究表明,各方向叶片主脉两侧的光合能力的差异与光照日辐射量(DPI)密切相关。这表明叶片主脉两侧的光合异质性受其自身的光照日辐射量的影响。进一步通过叶片局部遮荫模拟试验验证了这一结论。同时,局部遮荫叶片未遮荫侧的光合能力和叶片厚度等显著低于未遮荫叶片。因此,单个叶片的不同部位间存在光合性能的系统调控。
为明确不同生育时期受灾对棉花恢复生长及产量的影响,本研究于2018-2019年,以鲁棉研24号为供试材料,采用自制工具拍打法从棉花五叶期至吐絮期每隔约15天(同一地块只进行一次损害处理)进行4种程度(0%、30%、60%和90%),共计六次(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ)的雹灾模拟试验,获取受灾后植株叶面积指数、光合势、干物质积累与分配、产量及吐絮铃空间分布图。研究结果表明,棉花籽棉产量随受灾程度的增加而下降,降幅随受灾时期的推迟而增大,其中在花后(第Ⅳ、Ⅴ、Ⅵ时期),30%、60%和90%受灾程度的产量比0%受灾程度分别减少9%-17%、22%-37%和48%-71%。这是由于棉花受雹灾损害后植株叶面积指数和光合势下降,导致干物质积累量减少,但由于棉花的无限生长习性,花前(第Ⅰ、Ⅱ、Ⅲ时期)受灾后营养器官产生较强的补偿能力进而促使蕾铃发育,仅植株中上部及外围果节的吐絮铃受到影响,造成较少的产量损失;花后受灾后营养器官补偿能力下降、恢复时间短,不足以促进新生铃发育、成熟,导致有效果枝数及各果节吐絮铃数下降,造成较大的产量损失。因此,花前受灾后补救措施应以促蕾铃发育为主,促叶片发育为辅;花后受灾后补救应以保铃、促叶片发育为主。本文从灾后植株叶面积指数、光合势、地上生物量积累与分配等方面研究棉花受雹灾损害后的恢复生长及其对最终产量的影响,该研究结果可为减灾、制定灾后管理方案及产量预测提供理论依据。
为了阐明减氮施肥对抗虫棉棉蕾中Bt杀虫蛋白含量的影响,在2015-2016棉花生长季,以常规种泗抗1号(SK-1)和杂交种泗抗3号(SK-3)为试验材料,分别进行了0、75、150、225、300 kg/公顷的施氮量处理。在不同施氮量处理下,随着施氮量从常规施氮量(300kg/公顷)降低到0 kg/公顷,单株蕾数、棉蕾体积和棉蕾干重均呈下降趋势,同时棉蕾Bt杀虫蛋白含量也相应下降。氮代谢分析结果表明,减氮条件下可溶性蛋白含量、GPT和GOT活性降低,游离氨基酸含量、肽酶和蛋白酶活性升高。相关性分析结果表明,缺氮条件下Bt蛋白含量的降低与氮代谢生理变化相关。综上所述,减氮条件下,棉蕾生长和棉蕾中Bt杀虫蛋白含量均呈下降趋势,因此在蕾期适当的施氮量在促进棉蕾生长的同时也可提高棉花抗虫性。在人间游历 爱是最壮观的迁徙。
在转Bt基因抗虫棉(Bt棉)所有器官中,棉铃中杀虫蛋白含量最低。这也影响了Bt棉高产的获得。本文主要探讨了喷施不同浓度氮素(尿素)对Bt棉棉子中杀虫蛋白含量和籽棉产量的影响及其相关的生理机制。2017-2018年以泗抗3号(杂交种)和泗抗1号(常规种)为材料,在棉铃形成期,喷施不同浓度尿素。2017年设置0%、2%、4%、6%、8%、10% 等6个浓度;2018年设置0%、1%、3%、5%、7%、9%等6个浓度。尿素浓度对Bt棉棉子中杀虫蛋白含量和最终籽棉产量均有明显影响,其中喷施5%-6%尿素处理可显著提高供试品种棉子中杀虫蛋白含量且籽棉产量最高。进一步分析表明,喷施5%-6%尿素处理下,泗抗3号和泗抗1号棉铃中游离氨基酸和可溶性蛋白含量、谷氨酸丙酮酸转氨酶(GPT)和谷氨酸草酰乙酸转氨酶(GOT)活性均较高,但肽酶和蛋白酶活性却显著降低。相关性分析表明,游离氨基酸含量、GPT活性与棉子中杀虫蛋白含量呈显著线性正相关关系。此外,喷施5%-6%尿素后,供试品种田间棉铃虫数量及蛀铃率均显著降低,这也为最终高产的获得奠定了基础。喷施外源氮素可显著影响Bt棉棉子中杀虫蛋白含量,进而提高其对棉铃虫的抗性。其中喷施5%-6%尿素效果最为明显。
在棉花生产中,种植密度是用来控制棉铃分布、成铃情况和产量的常用栽培方法。2015年和2016年在大田条件下,研究了5种种植密度(PD1-PD5:15000;30000;45000;60000和75000株·ha-1)对两个Bt棉品种泗抗1号(常规品种)和泗抗3号(杂交品种)Bt杀虫蛋白含量的影响。单株铃数、铃重、棉铃体积均随密度的增加而减少。当种植密度从15000株/hm2增加到75000株/hm2时,棉子中Bt杀虫蛋白含量增加,2015年花后40天SK-1和SK-3中Bt杀虫蛋白含量分别增加了66.5%和53.4%,2016年SK-1和SK-3分别提高了36.8%和38.6%。氮代谢结果分析表明,随着密度的增加,可溶性蛋白含量、谷氨酸丙酮酸转氨酶(GPT)和谷氨酸草酰乙酸转氨酶(GOT)活性增加,游离氨基酸含量、蛋白酶和肽酶活性降低。花后20天数据分析表明,棉子Bt杀虫蛋白含量与可溶性蛋白水平呈显著正相关,2015年在SK-1和SK-3中的相关系数分别为0.825**和0.926**,2016年在SK-1和SK-3中的相关系数分别为0.955**和0.965**。相比之下,棉子Bt杀虫蛋白水平与游离氨基酸含量呈显著负相关,2015年在SK-1和SK-3中的相关系数分别为-0.983**和-0.974**,2016年在SK-1和SK-3中的相关系数分别为-0.996**和-0.986**。为进一步证实Bt杀虫蛋白含量与氮代谢的关系,分析发现Bt杀虫蛋白含量与GPT和GOT活性呈正相关,与蛋白酶和肽酶活性呈负相关。综上所述,高种植密度增加了棉子Bt杀虫蛋白含量,该增加与单株铃数、铃重和铃体积的减少密切相关。此外,在高种植密度下,氮代谢的变化也有助于Bt杀虫蛋白含量的增加。
增施氮肥可以加速棉花秸秆的分解,进而通过增加土壤氮素的供应能力和棉株氮素的吸收能力来提高棉花的产量。长期秸秆还田和高施氮量条件下,改变种植密度和施氮量是否可以提高棉花产量的研究目前尚不清楚。本研究于2016年至2017年在山东聊城进行,试验设置三个种植密度和五个施氮量,种植密度分别为5.25(D5.25)、6.75(D6.75)和8.25(D8.25)株m-2,施氮量分别为0(N0)、105(N105)、210(N210)、315(N315)和420(N420)kg ha-1,量化了种植密度和施氮量对棉花产量、氮肥利用、叶片衰老、土壤无机氮和表观氮平衡的影响。与常规组合(D5.25N315)相比,种植密度增加28.6%、施氮量减少33.3%(D6.75N210)可以保持较高的棉花产量,而种植密度增加28.6%、施氮量减少66.7%(D6.75N105)仅可在第一年实现高产;生物量则随着种植密度和施氮量的增加而增加,两年均在D8.75N420获得最高值。与D5.25N315相比,D6.75N105时NAE和NRE分别增加30.2%和54.1%,而D6.75N105时NAE和NRE则分别增加104.8%和88.1%;施氮量105 kg ha-1时土壤无机氮急剧下降,但在D6.75N210未发现差异;施氮量105 kg ha-1时,土壤氮素缺乏发生,但在D6.75N210时,土壤氮素缺乏未发生;施氮量为210-420 kg ha-1时叶片净光合速率和氮浓度均高于其他处理。综上,秸秆还田条件下,D6.75N210是黄河流域棉区和其他具有类似生态的地区的优先组合。
2013-2016年于扬州大学试验田,本试验对短季棉品种中棉所50(CRRI50)进行了密度(12.0、13.5和15.0株﹒m-2)和缩节胺剂量(180、270和360 g ha-1)的组合处理。结果表明,在13.5株﹒m-2和270g﹒ha-1 缩节胺处理下,单位面积铃数最多,棉铃日增量最高,90%以上的棉铃均出现在离地面高45-80cm范围内。综上所述,麦后直播棉种植模式下,适宜的缩节胺剂量配合高种植密度可促进集中成铃,使中、上冠层棉铃分布较多,并且不减产,从而克服目前移栽棉种植模式下用工多的问题。
棉花是易遭受病虫为害的世界性重要农作物。长期以来,棉花病虫害防治主要依靠化学农药。虽然化学防治的效果明显,但长期使用化学杀虫剂会导致害虫抗药性增强、天敌减少、自然控制力下降以及环境污染。随着人们环保意识的增强和棉花可持续生产的需要,利用间作等生物手段防治棉花病虫害日益受到重视。棉花与其他作物间作可以在不影响棉花品质的前提下,显著提高间作系统的产量、产值和经济效益。间作还通过改变农田生态结构和环境条件,增加天敌数量,减少某些病虫害的发生。棉田间作是降低棉花与粮食或其他经济作物争地的有效途径,也是增加棉田天敌数量生态控制棉田病虫害的重要策略。然而,不合理的间作也会增加用工成本,降低病虫害防效。本文评述了间作在防治棉花病虫害方面的作用和机理,以及对棉田间作系统的有效管理;讨论了间作防治棉花病虫害的风险和局限性,以及需要进一步研究的内容和应用前景。为设计经济可行和生态友好的棉田间作模式 (系统) 控制病虫害发生、减少化学农药投入、降低棉花生产成本提供指导。