Aikman D P. 1989. Potential increase in photosynthetic efficiency from the redistribution of solar radiation in a crop. Journal of Experimental Botany, 40, 855–864.
Almeida A Q D, Rosolem C A. 2012. Cotton root and shoot growth as affected by application of mepiquat chloride to cotton seeds. Acta Scientiarum Agronomy, 34, 61–65.
Campbell C S, Heilman J L, Mcinnes K J, Wilson L T, Medley J C, Wu G, Cobos D R. 2001. Seasonal variation in radiation use efficiency of irrigated rice. Agricultural & Forest Meteorology, 110, 45–54.
Constable G A. 1986. Growth and light receipt by mainstem cotton leaves in relation to plant density in the field. Agricultural & Forest Meteorology, 37, 279–292.
Cook D R, Kennedy C W. 2000. Early flower bud loss and mepiquat chloride effects on cotton yield distribution. Crop Science, 40, 1678–1684.
Djanaguiraman M, Sheeba J A, Devi D D, Bangarusamy U. 2005. Response of cotton to Atonik and TIBA for growth, enzymes and yield. Journal of Biological Sciences, 5, 158–162.
Dong C L, Luo H H, Zhang Y L, Zhang W F. 2013. Research on cotton agronomic traits and chemical topping effect after spraying flumetralin. Xinjiang Agricultural Sciences, 50, 1985–1990. (in Chinese)
Du M W, Feng G Y, Yao Y D, Luo H H, Zhang Y L, Xia D L, Zhang W F. 2009. Canopy characteristics and its correlation with photosynthesis of super high-yielding hybrid cotton Biaoza A-1 and Shiza 2. Acta Agronomica Sinica, 35, 1068–1077. (in Chinese)
Feng G Y, Luo H H, Yao Y D, Yang M S, Du M W, Zhang Y L, Zhang W F. 2012. Spatial distribution of leaf and boll in relation to canopy photosynthesis of super high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 13, 2607–2617. (in Chinese)
Feng Z F. 1956. China’s Cotton. Finance and Economic Press. p. 103. (in Chinese)
Fernandez C J, Cothren J T, Mcinnes K J. 1991. Partitioning of biomass in well-watered and water-stressed cotton plants treated with mepiquat chloride. Crop Science, 31, 1224–1228.
Flenet F, Kiniry J R, Board J E, Westgate M E, Reicosky D C. 1996. Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agronomy Journal, 88, 185–190.
Fu M A, Meng L I, Yang J, Xin J I, Xiang S, Tao H. 2002. A study of effect of water deficit of three period during cotton anthesis on canopy apparent photosynthesis and WUE. Scientia Agricultura Sinica, 35, 1467–1472. (in Chinese)
Gencsoylu I. 2009. Effect of plant growth regulators on agronomic characteristics, lint quality, pests, and predators in cotton. Journal of Plant Growth Regulation, 28, 147–153.
Gencsoylu I, Yalc?n I. 2010. Advantages of different tillage systems and their effects on the economically important pests, Thrips tabaci lind. and Aphis gossypii Glov. in cotton fields. Journal of Agronomy & Crop Science, 190, 381–388.
Gonias E D, Oosterhuis D M, Bibi A C. 2012. Cotton radiation use efficiency response to plant growth regulators. Journal of Agricultural Science, 150, 595–602.
Guinn G. 1974. Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration. Crop Science, 14, 291–293.
Guinn G. 1985. Fruiting of cotton. III. nutritional stress and cutout. Crop Science, 25, 981–985.
Gwathmey C O, Clement J D. 2010. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Research, 116, 101–107.
Gwathmey C O, Wassel O M, Michaud C. 1995. Pix effects on canopy light interception by contrasting cotton varieties. In: Proceedings of Beltwide Cotton Conference. pp. 4–7.
Herbert T J. 1991. Variation in interception of the direct solar beam by top canopy layers. Ecology, 72, 17–22.
Herbert T J. 1992. Random wind-induced leaf orientation-effect upon maximization of whole plant photosynthesis. Photosynthetica, 26, 601–607.
Kuroiwa S. 1970. Total photosynthesis of a foliage in relation to inclination of leaves. In: Setlik I, ed., Prediction and Measurement of Photosynthetic Productivity. Pudoc, Wageningen. pp. 79–89.
Lamas F M. 2001. Comparative study of mepiquat chloride and chlormequat chloride application in cotton. Pesquisa Agropecuária Brasileira, 36, 265–272. (in Portuguese)
Li Y B, Han Y C, Lu F, Wang G P, Wang Z B, Mao S C. 2017. Advances of light and simplified cultivation technologies in China. Cotton Science, 29, 80–88. (in Chinese)
Mao L L, Zhang L Z, Zhao X H, Liu S D, Werf W V D, Zhang S P, Spiertz H, Li Z H. 2014. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Research, 155, 67–76.
Mathew J P, Herbert S J, Zhang S H, Rautenkranz A A F, Litchfield G V. 2000. Differential response of soybean yield components to the timing of light enrichment. Agronomy Journal, 92, 1156–1161.
Mondino M H, Peterlín O A, Garay F. 2004. Response of late-planted cotton to the application of a growth regulator (chlorocholine chloride, cycocel 75). Australian Journal of Experimental Agriculture, 40, 381–387.
Rademacher W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Biology, 51, 501–531.
Reddy A R, Reddy K R, Hodges H F. 1996. Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regulation, 20, 179–183.
Ren X M, Zhang L Z, Du M W, Evers J B, Werf W V D, Tian X L, Li Z H. 2013. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research, 149, 1–10.
Reta-Sánchez D G, Fowler J L. 2002. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agronomy Journal, 94, 1317–1323.
Rosolem C A, Oosterhuis D M, De Souza F S. 2013. Cotton response to mepiquat chloride and temperature. Scientia Agricola, 70, 82–87.
Ruiz R A, Bertero H D. 2008. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa willd.) cultivars. European Journal of Agronomy, 29, 144–152.
Siebert J D, Stewart A M. 2006. Influence of plant density on cotton response to mepiquat chloride application. Agronomy Journal, 98, 1634–1639.
Su C F, Qiu X M, Wang S L. 2012. Utilization study on application of tobacco suckercides flumetralin in cotton topping. Acta Agricultural Zhejiangensis, 24, 545–548. (in Chinese)
Wang L, Mu C, Du M W, Chen Y, Tian X L, Zhang M C, Li Z H. 2014. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Science, 225, 15–23.
Wells R, Meredith W R, Williford J R. 1986. Canopy photosynthesis and its relationship to plant productivity in near-isogenic cotton lines differing in leaf morphology. Plant Physiology, 82, 635–640.
Xu S Z, Zuo W Q, Chen M Z, Sui L L, Dong H Y, Jiu X L, Zhang W F. 2017. Effect of drip irrigation amount on the agronomic traits and yield of cotton grown with a chemical topping in northern Xinjiang, China. Cotton Science, 29, 345–355. (in Chinese)
Yao H S, Zhang Y L, Yi X P, Zuo W Q, Lei Z Y, Sui L L, Zhang W F. 2017. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 203, 192–200.
Yu Q. 1998. A mathematical study on crop architecture and canopy photosynthesis I. model. Acta Agronomica Sinica, 24, 7–15. (in Chinese)
Zhao D L, Oosterhuis D M. 2000. Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. Journal of Plant Growth Regulation, 19, 415–422.
Zhao Q, Zhang J S, Zhou C J, Yun Y L, Li S L, Tian X L. 2011. Chemical detopping increases the optimum plant density in cotton (Gossypium hirsutum L.). Cotton Science, 23, 401–407. (in Chinese)
|