期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 鸡干扰素调节因子7剪切异构体负调控干扰素β的表达
MA Yu-chen, CHEN Hua-yuan, GAO Shen-yan, ZHANG Xiao-zhan, LI Yong-tao, YANG Xia, ZHAO Jun, WANG Zeng
Journal of Integrative Agriculture    2023, 22 (7): 2213-2220.   DOI: 10.1016/j.jia.2022.12.015
摘要136)      PDF    收藏
型干扰素(type I interferon, IFN-I)是保护机体抵御病原微生物感染的重要防线。干扰素调节因子(IFN regulatory factorIRF)在DNARNA病毒感染鸡后刺激机体产生IFN-I、建立抗感染免疫的过程中发挥重要作用。在哺乳动物体内,主要依赖IRF3IRF7共同调节IFN-I的表达。但是,鸡先天缺乏IRF3,主要依赖IRF7调控IFN-I的表达。目前,已在哺乳动物体内鉴定出4IRF7剪切异构体,但鸡IRF7chicken IRF7 chIRF7)是否存在类似的剪切变异及其功能均不清楚。本研究在构建chIRF7克隆过程中,鉴定出一个新的剪切异构体,命名为chIRF7-iso。序列分析发现,与chIRF7相比,chIRF7-iso包含完整的NDNA-结合结构域,但其C端存在14个差异氨基酸。随后,我们评估了chIRF7chIRF7-isoIFN-β启动子的活化能力,并以新城疫病毒弱毒疫苗株LaSota和高致病性血清4型禽腺病毒(Fowl adenovirus serotype 4, FAdV-4)作为研究对象,评估了chIRF7-iso对这两株病毒在鸡肝细胞(leghorn male hepatocellular LMH)中复制能力的影响。结果发现,chIRF7可以促进IFN-β的高水平表达,而chIRF7-isoIFN-β启动子活性及表达量无明显影响。此外,LaSotaFAdV-4在过表达chIRF7LMH细胞中复制水平较低,而在chIRF7-iso转染组细胞中增殖较好。这些结果均说明,本研究新鉴定出一种chIRF7剪切异构体,且chIRF7-iso可能通过负调控IFN-β通路而影响病毒的增殖。该研究为丰富鸡天然免疫应答奠定了基础。
参考文献 | 相关文章 | 多维度评价
2. 基于计算机视觉技术的草地贪夜蛾生殖发育状态精准识别 与产卵预测
LÜ Chun-yang, GE Shi-shuai, HE Wei, ZHANG Hao-wen, YANG Xian-ming, CHU Bo, WU Kong-ming
Journal of Integrative Agriculture    2023, 22 (7): 2173-2187.   DOI: 10.1016/j.jia.2022.12.003
摘要187)      PDF    收藏

草地贪夜蛾(鳞翅目:夜蛾科)是世界范围内重要的迁飞性农业害虫,自2016年以来入侵非亚洲多个国家,目前对世界粮食安全构成严重威胁。当前,草地贪夜蛾的监测和预警策略主要集中在成虫种群密度,缺乏准确预测成虫繁殖动态的信息技术平台。于是在本研究中,为了识别成虫的发育状况,我们首先利用雌性卵巢图像提取和筛选出五个特征并结合支持向量机(SVM)分类器,以及利用雄性精巢图像获取精巢的圆形特征,对成虫发育时间进行判定。然后,利用实验室测试建立了产卵动态与成虫生殖器官发育时间之间关系的模型。结果表明,雌性卵巢发育等级判断的准确率达到91%,卵巢发育时间实际值与预测值的均方误差(MSE)为0.2431,日产卵量实际值与预测值的平均误差率为12.38%。精巢直径识别误差3.25%,雄性精巢发育时间预测值和实际值的均方误差为0.7734。综合上述研究成果,开发了草地贪夜蛾生殖发育状态识别及繁殖预测微信小程序,现已开放给植保人员使用。本研究开发了一种自动化方法,可以精准预测草地贪夜蛾种群繁殖动态,有助于建设种群监测预和警系统,供专业专家和当地群众使用。

参考文献 | 相关文章 | 多维度评价
3. JIA-2021-1980 水稻中胚轴长度的QTL分析和候选基因鉴定
ZHANG Xi-juan, LAI Yong-cai, MENG Ying, TANG Ao, DONG Wen-jun, LIU You-hong, LIU Kai, WANG Li-zhi, YANG Xian-li, WANG Wen-long, DING Guo-hua, JIANG Hui, REN Yang, JIANG Shu-kun
Journal of Integrative Agriculture    2023, 22 (2): 325-340.   DOI: 10.1016/j.jia.2022.08.080
摘要599)      PDF    收藏
由于水稻直播在节约劳动力、节约水资源、保护环境和大幅减少温室气体排放等方面具有巨大潜力。因此,正成为许多国家水稻生产的主要栽培技术。挖掘和利用中胚轴伸长基因是加快直播稻育种和满足直播水稻生产要求的最有效途径之一。黑龙江省农业科学院利用丽江新团黑谷(LTH)和沈农265(SN265)衍生的144个重组自交系(RIL)群体及其配套的包含2,828个bin标记的连锁图谱分别在2019年和2020年检测了与中胚轴长度相关的数量性状基因座(QTL)。采用30°C黑暗环境下培养10天后测量中胚轴长度。在第1(2)、2(4)、3(2)、4、5、6、7、9、11(2)和12号染色体上共鉴定出16个中胚轴长度QTL。其中7个QTLs可以在两年中被重复检测到,包括qML1aqML1bqML2dqML3aqML3bqML5qML11b。主效QTL-qML3a还可以在不同作图方法中被重复检测到。进一步分析发现,qML3a被定位在88.18kb的范围内,这一区间包含13个预测基因。利用近等基因系也证明了qML3a的真实存在和调控中胚轴伸长的效果。最后,通过分析SN265、LTH 和日本晴之间的DNA序列变异,表明LOC_Os03g50550qML3a的候选基因。该基因编码有丝分裂原活化的蛋白激酶。使用qRT-RCR分析进一步揭示了LTH中胚轴中LOC_Os03g50550基因的表达水平显著低于SN265中胚轴中的表达水平。这些结果进一步加强了我们对水稻中胚轴伸长遗传机制的认识,也将有助于加快直播专用新品种的育种进程。


参考文献 | 相关文章 | 多维度评价
4. 葡萄籽提取物对高氧包装肉饼肉色和提前褐变的影响
YANG Xiao-yin, XU Bao-chen, LEI Hong-mei, LUO Xin, ZHU Li-xian, ZHANG Yi-min, MAO Yan-wei, LIANG Rong-rong
Journal of Integrative Agriculture    2022, 21 (8): 2445-2455.   DOI: 10.1016/S2095-3119(21)63854-6
摘要267)      PDF    收藏

研究调查了葡萄籽提取物(GSE)对高氧气调包装HiOx-MAP肉饼的生鲜肉色、熟制肉色和提前褐变的影响。GSE在肉饼中的添加量为00.10.250.50.75 g kg-1。本研究测定了生肉饼在4贮藏10天过程中的表面肉色、pH值、脂肪氧化和菌落总数(TVC),测定了加热至66℃或71℃时肉饼的中心肉色和pH值。与对照组(0 g kg-1 GSE)相比,GSE改善了5-10天生肉饼的肉色稳定性 (P<0.05),并且显著抑制了脂肪氧化和肌红蛋白氧化,但对TVC没有显著影响 (P>0.05)。添加0.50.75 g kg-1 GSE的肉饼在贮藏后期熟制至66℃时,中心红度比对照组高(P<0.05),并且减少了熟肉饼的PMB程度。以上结果表明,0.50.75 g kg-1 GSE的添加可以改善HiOx-MAP肉饼的生鲜肉色并减少PMB的发生。


参考文献 | 相关文章 | 多维度评价
5. JIA-2021-0387长期施用控释肥在双季稻上的增产增效作用
TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei
Journal of Integrative Agriculture    2022, 21 (7): 2106-2118.   DOI: 10.1016/S2095-3119(21)63734-6
摘要217)      PDF    收藏

在湖南农业大学实验基地进行了长达5年的长期定位实验,研究施用90天释放期的聚乙烯包膜尿素对双季稻产量、氮肥利用率、土壤残留无机氮、土壤-植株系统氮平衡和经济效益的影响。本研究共设置了四个不同的施氮肥处理,包括CK(不施氮肥)、U(全量施用普通尿素)、CRU1(全量施用聚乙烯包膜尿素)、CRU2(减氮20%施用聚乙烯包膜尿素)。研究结果表明相比较全量施用普通尿素而言,全量施用控释肥能够分别提高作物产量和氮肥利用率11.0、13.5%。CRU1在晚稻上的产量和氮肥利用率的应用效果要优于早稻。研究结果表明全量施用控释肥可以提高早稻产量6.0%,可以提高早稻氮肥利用率10.2%;提高晚稻产量15.4%;,提高晚稻氮肥利用率13.8%。除此之外,CRU1与CRU2的双季稻产量和氮肥利用率没有明显的差异。此外施用控释肥处理(包括CRU1和CRU2)相较于U有较高的表观土壤残留率和作物表观氮素回收率,同时有较低的表观氮素损失,且CRU2相比较CRUI呈现出较好的的效果。在收获后,控释肥处理(包括CRU1和CRU2)能够维持土壤耕层(0-20 cm)较高的铵态氮和硝态氮浓度,并且能够减少深层土层(40-60 cm)的铵态氮和硝态氮浓度。此外,据估算施用控释肥处理还能获得较好的经济效益。总得来说,施用控释肥要比施用普通肥料在水稻产量、氮肥利用率、土壤-植株氮素平衡、经济效益上表现得更加优越,并且其中减氮施用20%控释肥处理有最优的综合效益。因此,我们认为施用控释肥能够有效解决水稻生产中的氮素管理所面临的挑战。


参考文献 | 相关文章 | 多维度评价
6. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China
ZHANG Dan-dan, XIAO Yu-tao, XU Peng-jun, YANG Xian-ming, WU Qiu-lin, WU Kong-ming
Journal of Integrative Agriculture    2021, 20 (3): 783-791.   DOI: 10.1016/S2095-3119(20)63392-5
摘要258)      PDF    收藏

草地贪夜蛾自2018年12月11日入侵云南后已在我国定殖并形成了周年繁殖区,春夏季将以周年繁殖区为起点向北迁飞。明确其周年发生区域,对指导我国草地贪夜蛾的监测预警及科学防控工作具有重要意义。对冬季草地贪夜蛾在我国热带和亚热带地区的种群动态研究表明,幼虫虫口密度与冬季温度显著正相关,热带地区草地贪夜蛾幼虫种群密度最高,其次为南亚热带地区,而中亚热带北部地区和北亚热带地区未见草地贪夜蛾幼虫发生。研究结果指出草地贪夜蛾在我国1月份等温线10℃以南的热带和南亚热带地区可周年繁殖,该区域包括海南省和台湾省,以及福建、广东、广西、贵州和云南五省的南部区域。该研究明确了草地贪夜蛾的在中国的周年繁殖区域,为该虫区域性监测预警及防控提供了重要依据。


参考文献 | 相关文章 | 多维度评价
7. Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China
YANG Xian-ming, SONG Yi-fei, SUN Xiao-xu, SHEN Xiu-jing, WU Qiu-lin, ZHANG Hao-wen, ZHANG Dan-dan, ZHAO Sheng-yuan, LIANG Ge-mei, WU Kong-ming
Journal of Integrative Agriculture    2021, 20 (3): 772-782.   DOI: 10.1016/S2095-3119(20)63292-0
摘要106)      PDF    收藏

草地贪夜蛾自2018年12月11日入侵云南后已在我国定殖并形成了周年繁殖区,春夏季将以周年繁殖区为起点向北迁飞。明确其周年发生区域,对指导我国草地贪夜蛾的监测预警及科学防控工作具有重要意义。对冬季草地贪夜蛾在我国热带和亚热带地区的种群动态研究表明,幼虫虫口密度与冬季温度显著正相关,热带地区草地贪夜蛾幼虫种群密度最高,其次为南亚热带地区,而中亚热带北部地区和北亚热带地区未见草地贪夜蛾幼虫发生。研究结果指出草地贪夜蛾在我国1月份等温线10℃以南的热带和南亚热带地区可周年繁殖,该区域包括海南省和台湾省,以及福建、广东、广西、贵州和云南五省的南部区域。该研究明确了草地贪夜蛾的在中国的周年繁殖区域,为该虫区域性监测预警及防控提供了重要依据。


参考文献 | 相关文章 | 多维度评价
8. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China
SU Zheng-e, LIU Zhi-juan, BAI Fan, ZHANG Zhen-tao, SUN Shuang, HUANG Qiu-wan, LIU Tao, LIU Xiao-qing, YANG Xiao-guang
Journal of Integrative Agriculture    2021, 20 (2): 371-382.   DOI: 10.1016/S2095-3119(20)63359-7
摘要101)      PDF    收藏
Northeast China (NEC) is one of the major maize production areas in China. Agro-climatic resources have obviously changed, which will seriously affect crop growth and development in this region. It is important to investigate the contribution of climate change adaptation measures to the yield and resource use efficiency to improve our understanding of how we can effectively ensure high yield and high efficiency in the future. In this study, we divided the study area into five accumulated temperature zones (ATZs) based on growing degree days (GDD). Based on the meteorological data, maize data (from agro-meteorological stations) and the validated APSIM-Maize Model, we first investigated the spatial distributions and temporal trends of maize potential yield of actual planted cultivars, and revealed the radiation use efficiency (RUE) and heat resource use efficiency (HUE) from 1981 to 2017. Then according to the potential growing seasons and actual growing seasons, we identified the utilization percentages of radiation (PR) resource and heat resource (PH) for each ATZ under potential production from 1981 to 2017. Finally, we quantified the contributions of cultivar changings to yield, PR and PH of maize. The results showed that during the past 37 years, the estimated mean potential yield of actual planted cultivars was 13 649 kg ha–1, ranged from 11 205 to 15 257 kg ha–1, and increased by 140 kg ha–1 per decade. For potential production, the mean values of RUE and HUE for the actual planted maize cultivars were 1.22 g MJ–1 and 8.58 kg (°C d)–1 ha–1. RUE showed an increasing tendency, while HUE showed a decreasing tendency. The lengths of the potential growing season and actual growing season were 158 and 123 d, and increased by 2 and 1 d per decade. PR and PH under potential production were 82 and 86%, respectively and showed a decreasing tendency during the past 37 years. This indicates that actual planted cultivars failed to make full use of climate resources. However, results from the adaptation assessments indicate that, adoption of cultivars with growing season increased by 2–11 d among ATZs caused increase in yield, PR and PH of 0.6–1.7%, 1.1–7.6% and 1.5–8.9%, respectively. Therefore, introduction of cultivars with longer growing season can effectively increase the radiation and heat utilization percentages and potential yield.
参考文献 | 相关文章 | 多维度评价
9. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum
GONG Xiao-dong, LIU Yu-wei, BI Huan-huan, YANG Xiao-rong, HAN Jian-min, DONG Jin-gao, GU Shou-qin
Journal of Integrative Agriculture    2021, 20 (1): 147-158.   DOI: 10.1016/S2095-3119(20)63233-6
摘要133)      PDF    收藏

同源重组(homologous recombination, HR)和非同源末端连接(nonhomologous end joining, NHEJ)是真核生物两种主要的双链断裂(DSB)修复方法。通常抑制NHEJ中关键组分的活性能够提高靶基因敲除的效率或者影响真核生物的生长和发育。然而,在玉米大斑病菌(Exserohilum turcicum)有关NHEJ途径的作用了解甚少。为了研究玉米大斑病菌中编码NHEJ途径关键组分蛋白Ku80基因的功能,我们在玉米大斑病菌鉴定并分析了该基因对病菌生长发育及致病性调控作用。方法:本研究通过利用同源比对的方法,在玉米大斑病菌中鉴定到与酵母Ku80同源的基因,命名为StKU80,并对该基因进行了相关生物信息分析;利用农杆菌介导的遗传转化技术(ATMT)获得了两株稳定的StKU80基因敲除突变体,并对基因的功能进行了分析。结果:保守结构域分析表明,StKu80包含真核生物的KU70p / KU80p蛋白典型的结构域VWA,Ku78和Ku-PK-bind;进一步的系统发育分析表明,StKu80与来自小麦颖枯病菌(Parastagonospora nodorum)的Ku80(XP_001802136.1)亲缘关系较近,其次是来自红曲霉(Monascus ruber)的Ku80(AGF90044.1);突变体与野生型(WT)菌株相比,突变体的菌丝间隔变的更长,细胞壁较薄,在细胞壁表面的物质变的变少以及细胞中线粒体的含量变多;对突变体致病相关的结构进行分析表明,突变体不产生分生孢子和成熟的附着胞,但是突变体的HT毒素活性与WT类似,表明StKU80影响了病菌了侵染过程,但并未影响病菌的致病力;对StKU80能否参与调控胁迫响应反应分析发现,突变体对由H2O2产生的氧化反应高度敏感,但是对紫外不敏感。结论:StKU80在调控玉米大斑病菌的生长发育、致病性及胁迫响应过程中发挥着重要的作用


参考文献 | 相关文章 | 多维度评价
10. Metabolic responses to combined water deficit and salt stress in maize primary roots
LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu
Journal of Integrative Agriculture    2021, 20 (1): 109-119.   DOI: 10.1016/S2095-3119(20)63242-7
摘要143)      PDF    收藏

土壤干旱和盐胁迫是植物生长和农业生产力的主要限制因素。主胚根是感知干旱和盐分胁迫信号的第一个器官。研究发现,与对照植株相比,遭受干旱、高盐和复合胁迫的玉米植株的主胚根长度明显变短。利用气相色谱-质谱联用技术测定了玉米主胚根在干旱、高盐和复合胁迫下代谢产物的变化。本研究共测定86种代谢产物,包括29种氨基酸和胺,21种有机酸,4种脂肪酸,6种磷酸,10种多糖,10种多元醇和6种其他代谢物。其中,53个代谢物在不同胁迫下均有显著变化,且大部分代谢物含量呈下降趋势。共计4种和18种代谢物分别对三种处理均有显著的上调和下调。糖和多元醇等可溶性物质的含量增加以维持渗透平衡。TCA循环中柠檬酸、酮戊二酸、延胡索酸、苹果酸的水平显著降低,莽草酸途径中奎宁酸、莽草酸等代谢物含量显著降低。本研究揭示了主胚根在干旱和盐胁迫复合作用下的复杂代谢反应,拓展了我们对玉米根系对非生物耐受性反应机制的理解。


参考文献 | 相关文章 | 多维度评价
11. Effects of different rotation patterns on the occurrence of clubroot disease and diversity of rhizosphere microbes
YANG Xiao-xiang, HUANG Xiao-qin, WU Wen-xian, XIANG Yun-jia, DU Lei, ZHANG Lei, LIU Yong
Journal of Integrative Agriculture    2020, 19 (9): 2265-2273.   DOI: 10.1016/S2095-3119(20)63186-0
摘要135)      PDF    收藏
Clubroot disease, caused by Plasmodiophora brassicae, is one of the most destructive soil-borne diseases in cruciferous crops worldwide.  New strategies are urgently needed to control this disease, as no effective disease-resistant varieties or chemical control agents exist.  Previously, we found that the incidence rate and disease index of clubroot in oilseed rape decreased by 50 and 40%, respectively, when oilseed rape was planted after soybean.  In order to understand how different rotation patterns affect the occurrence of clubroot in oilseed rape, high-throughput sequencing was used to analyze the rhizosphere microbial community of oilseed rape planted after leguminous (soybean, clover), gramineous (rice, maize) and cruciferous (oilseed rape, Chinese cabbage) crops.  Results showed that planting soybeans before oilseed rape significantly increased the population density of microbes that could inhibit P. brassicae (e.g., Sphingomonas, Bacillus, Streptomyces and Trichoderma).  Conversely, consecutive cultivation of cruciferous crops significantly accumulated plant pathogens, including P. brassicae, Olpidium and Colletotrichum (P<0.05).  These results will help to develop the most effective rotation pattern for reducing clubroot damage.
参考文献 | 相关文章 | 多维度评价
12. Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling
CHEN Yan-hui, YANG Xiao-zhu, LI Zhuang, AN Xiu-hong, MA Ren-peng, LI Yan-qing, CHENG Cun-gang
Journal of Integrative Agriculture    2020, 19 (10): 2458-2469.   DOI: 10.1016/S2095-3119(20)63303-2
摘要139)      PDF    收藏
Chemical potassium (K) fertilizer is commonly used in apple (Malus domestica L. Borkh) production but K is easily fixed by soil, resulting in reduced K fertilizer utilization and wasted resources.  K-solubilizing bacteria (KSB) can cost-effectively increase the soluble K content in rhizosphere soil.  Therefore, the objectives were to select high-efficiency KSB from apple orchards under various soil management models and evaluate their effects on apple seedling growth.  Maize (Zea mays L.) straw mulching (MSM) increased the total carbon (TC), total nitrogen (TN) and available potassium (AK) in the rhizosphere and improved fruit quality.  The number of KSB in the rhizosphere soil of MSM was 9.5×104 CFU g–1 soil, which was considerably higher than that in the other mulching models.  Fourteen KSB strains were isolated with relative K solubilizing ability ranging from 17 to 30%, and five strains increased the dry weight per apple seedling.  The most efficient strain was identified as Paenibacillus mucilaginosus through morphological observation and sequence analysis of 16S rDNA, named JGK.  After inoculation, the colonization of JGK in soil decreased from 4.0 to 1.5×109 CFU g–1 soil within 28 d.  The growth of the apple seedlings and the K accumulation in apple plants were promoted by irrigation with 50 mL JGK bacterial solution (1×109 CFU mL–1), but there was no significant increase in the AK content of rhizosphere soil.  High-performance liquid phase analysis (HPLC) data showed that the JGK metabolites contained phytohormones and organic acids.  Hence, the JGK strain promoted the growth of two-month-old apple seedlings by stimulating function of the produced phytohormones and enhanced K solubility by acidification for apple seedling uptake.  This study enriches the understanding of KSB and provides an effective means to increase the K utilization efficiency of apple production.
参考文献 | 相关文章 | 多维度评价
13. An improved protein expression system for T3SS genes regulation analysis in Xanthomonas oryzae pv. oryzae
XU Jin-bo, ZHANG Cui-ping, WUNIERBIEKE Mei-li, YANG Xiao-fei, LI Yi-lang, CHEN Xiao-bin, CHEN Gong-you, ZOU Li-fang
Journal of Integrative Agriculture    2019, 18 (6): 1189-1198.   DOI: 10.1016/S2095-3119(19)62606-7
摘要248)      PDF    收藏
Xanthomonas oryzea pv. oryzae (Xoo) is the causal agent of bacterial blight of rice, which is a significant threat to many of rice-growing regions. The type III secretion system (T3SS) is an essential virulence factor in Xoo. Expression of the T3SS is often induced in the host environment or in hrp-inducing medium but is repressed in nutrient-rich medium. The elucidation of molecular mechanism underlying induction of T3SS genes expression is a very important step to lift the veil on global virulence regulation network in Xoo. Thus, an efficient and reliable genetic tool system is required for detection of the T3SS proteins. In this study, we constructed a protein expression vector pH3-flag based on the backbone of pHM1, a most widely used vector in Xoo strains, especially a model strain PXO99A. This vector contains a synthesized MCS-FLAG cassette that consists of a multiple cloning site (MCS), containing a modified pUC18 polylinker, and Flag as a C-terminal tag. The cassette is flanked by transcriptional terminators to eliminate interference of external transcription enabling detection of accurate protein expression. We evaluated the potential of this expression vector as T3SS proteins detection system and demonstrated it is applicable in the study of T3SS genes expression regulation in Xoo. This improved expression system could be very effectively used as a molecular tool in understanding some virulence genes expression and regulation in Xoo and other Xanthomonas spp.
相关文章 | 多维度评价
14. Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years
HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing
Journal of Integrative Agriculture    2019, 18 (3): 539-552.   DOI: 10.1016/S2095-3119(18)62012-X
摘要209)      PDF(pc) (1488KB)(207)    收藏
Cotton is a globally important natural fiber and oilseed crop of crucial economic significance.  Molecular breeding has become a dominant method of cotton cultivation because it allows for a shorter breeding period and directional selection of high quality genes.  Patent data are key resources and are the core competitiveness of agricultural development, as the world’s largest and most reliable source of technical information.  However, little attention has been paid to patent analysis of cotton molecular breeding.  This study uses bibliometric analysis methodology and technical classification indexing to reveal global development trends of cotton molecular breeding, based on patents by retrieval methods and expert screening.  The annual number of patents, the life-cycle of patent-based technology, patent portfolios of primary countries, and main patentees, as well as technical distribution of patents, were analyzed in this study.  In addition, this study put emphasis on the comparative analysis of two important patentees through patent roadmaps based on the relationship among patent citations.  Finally, in order to understand the trend of new molecular breeding technology, patents related to clustered regularly interspaced short palindromic repeats (CRISPR), RNA interference (RNAi), and gene chip were also analyzed, all of which apply to cotton but also to other crops.  Results in this paper can provide references for cotton molecular breeding researchers and relevant management departments.
 
 
参考文献 | 相关文章 | 多维度评价
15. Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands
LI Zi-chuan, SONG Zhao-liang, YANG Xiao-min, SONG A-lin, YU Chang-xun, WANG Tao, XIA Shaopan, LIANG Yong-chao
Journal of Integrative Agriculture    2018, 17 (10): 2182-2195.   DOI: 10.1016/S2095-3119(18)62018-0
摘要381)      PDF(pc) (1235KB)(498)    收藏
Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production.  As a beneficial element, silicon (Si) has multiple eco-physiological functions, which could help crops to acclimatize their unfavorable habitats.  Although many studies have reported that the application of Si can alleviate multiple abiotic and biotic stresses and increase biomass accumulation, the effects of Si on carbon immobilization and nutrients uptake into plants in croplands have not yet been explored.  This review focused on Si-associated regulation of plant carbon accumulation, lignin biosynthesis, and nutrients uptake, which are important for biogeochemical cycles of carbon and nutrients in croplands.  The tradeoff analysis indicates that the supply of bioavailable Si can enhance plant net photosynthetic rate and biomass carbon production (especially root biomass input to soil organic carbon pool), but reduce shoot lignin biosynthesis.  Besides, the application of Si could improve uptake of most nutrients under deficient conditions, but restricts excess uptake when they are supplied in surplus amounts.  Nevertheless, Si application to crops may enhance the uptake of nitrogen and iron when they are supplied in deficient to luxurious amounts, while potassium uptake enhanced by Si application is often involved in alleviating salt stress and inhibiting excess sodium uptake in plants.  More importantly, the amount of Si accumulated in plant positively correlates with nutrients release during the decay of crop biomass, but negatively correlates with straw decomposability due to the reduced lignin synthesis.  The Si-mediated plant growth and litter decomposition collectively suggest that Si cycling in croplands plays important roles in biogeochemical cycles of carbon and nutrients.  Hence, scientific Si management in croplands will be helpful for maintaining sustainable development of agriculture.
 
参考文献 | 相关文章 | 多维度评价
16. Simple nonlinear model for the relationship between maize yield and cumulative water amount
LIU Cheng SUN Bao-cheng, TANG Huai-jun, WANG Tian-yu LI Yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Jian-sheng
Journal of Integrative Agriculture    2017, 16 (04): 858-866.   DOI: 10.1016/S2095-3119(16)61493-4
摘要794)      PDF    收藏
Both the additive and multiplicative models of crop yield and water supply are polynomial equations, and the number of parameters increases linearly when the growing period is specified.  However, interactions among multiple parameters occasionally lead to unreasonable estimations of certain parameters, which were water sensitivity coefficients but with negative value.  Additionally, evapotranspiration must be measured as a model input.  To facilitate the application of these models and overcome the aforementioned shortcomings, a simple model with only three parameters was derived in this paper based on certain general quantitative relations of crop yield (Y) and water supply (W).  The new model, Y/YmWk/(Wk+whk), fits an S or a saturated curve of crop yield with the cumulative amount of water.  Three parameters are related to biological factors: the yield potential (Ym), the water requirement to achieve half of the yield potential (half-yield water requirement, wh), and the water sensitivity coefficient (k).  The model was validated with data from 24 maize lines obtained in the present study and 17 maize hybrids published by other authors.  The results showed that the model was well fit to the data, and the normal root of the mean square error (NRMSE) values were 2.8 to 17.8% (average 7.2%) for the 24 maize lines and 2.7 to 12.7% (average 7.4%) for the 17 maize varieties.  According to the present model, the maize water-sensitive stages in descending order were pollen shedding and silking, tasselling, jointing, initial grain ?lling, germination, middle grain ?lling, late grain ?lling, and end of grain ?lling.  This sequence was consistent with actual observations in the maize field.  The present model may be easily used to analyse the water use efficiency and drought tolerance of maize at specific stages.
参考文献 | 相关文章 | 多维度评价
17. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil
Yasmin Khan Kiran, Ali Barkat, CUI Xiao-qiang, FENG Ying, PAN Feng-shan, TANG Lin, YANG Xiao-e
Journal of Integrative Agriculture    2017, 16 (03): 725-734.   DOI: 10.1016/S2095-3119(16)61488-0
摘要1258)      PDF    收藏
Organic amendment is a promising, in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.  The aim of this study was to evaluate the feasibility of cow manure (CM) and its derived biochar (CMB) as a soil amendment on cadmium (Cd) availability and accumulation in  low and  high Cd-accumulating cultivars of Brassica chinensis L. grown in an acidic red soil.  CM and CMB were applied to Cd-contaminated acidic red soil at the rates of 0, 3.0 and 6.0% (w/w).  Application of CMB was significantly more effective than that of CM, as it reduced the availability of Cd in soil by 34.3–69.9% and its bioaccumulation in the low Cd accumulator, Aijiaoheiye 333, by 51.2 and 67.4%, respectively.  The addition of CMB significantly increased the extractability and accumulation of trace metals (Zn, Mn, Fe, and Cu) by plants and improved plant biomass production.  CMB application, combined with utilizing low Cd accumulating cultivars represents a new, sustainable strategy to alleviate the toxic effects on Cd and improve food safety.
参考文献 | 相关文章 | 多维度评价
18. Bacterial artificial chromosome library construction of root-knot nematode resistant pepper genotype HDA149 and identification of clones linked to Me3 resistant locus
GUO Xiao, YANG Xiao-hui, YANG Yu, MAO Zhen-chuan, LIU Feng, MA Wei-qing, XIE Bing-yan, LI Guang-cun
Journal of Integrative Agriculture    2017, 16 (01): 57-64.   DOI: 10.1016/S2095-3119(16)61446-6
摘要1202)      收藏
Pepper (Capsicum annuum. L.) is a widely cultivated vegetable crop worldwide and has the second largest planting area and the first largest vegetable output and value in China.  Pepper root-knot nematode (Meloidogyne spp.) is one of the most serious pests of pepper, which caused huge losses every year.  Previous studies showed that the Me3 gene is resistant to a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita.  HDA149, a double haploid pepper genotype, harboring the root-knot nematode resistance gene Me3, was used to construct bacterial artificial chromosome library (BAC) via the vector of CopyControlTM pCC1 in this study.  The library consists of 210 200 BAC clones and is equivalent to 5.3 pepper genomes.  The average insert size is 95 kb, and most of them are 90–120 kb; but the empty clones are less than 3%.  In order to screen the BAC library easily, 550 super pools with 384 BAC clones of each pool were further developed in this study.  Specific primers from Me3 gene locus were used for BAC library screening, and more than 20 positive BAC clones were obtained.  Then the selected positive BAC clones were analyzed by restriction enzyme digestion, BAC-end sequencing, marker development, and new positive BAC clones exploration, respectively.  Finally, the contig with total length of about 300 kb linked to the Me3 locus was constructed based on chromosome walking strategy, which made a solid foundation for the cloning of the important root-knot nematode resistance gene Me3.
参考文献 | 相关文章 | 多维度评价
19. Defective callose walls and cell plates during abnormal meiosis cause male-sterility in the oat mutant zbs1
SHI Xiao, WU Jin-xia, ZHOU Hai-tao, YANG Xiao-hong, LI Tian-liang, ZHANG Xin-jun, YANG Cai, HAN Xiao
Journal of Integrative Agriculture    2016, 15 (2): 241-248.   DOI: 10.1016/S2095-3119(15)61086-3
摘要2067)      PDF    收藏
During meiosis in flowering plants, degradation of the callose wall in tetrads releases newly produced microspores, which develop into mature pollen grains. In this study, we identified zbs1, a male-sterile mutant of naked oat (Avena nuda L.) that displayed complete spikelet sterility due to inviable mature pollen. The abnormal pollen grains originated from microspores with a defective callose wall and cell plate during meiosis. The defective callose wall and cell plate of the zbs1 mutant were detected by the labeling of cell wall epitopes (β-1,3-glucan) with immunogold during meiosis, and an abnormal chromosome configuration was observed by propidium iodide staining. The mature pollen grains of the zbs1 mutant were irregular in shape, and abnormal germination was observed by scanning electron microscopy. Together, our results indicate that the cause of male sterility in zbs1 is abnormal meiosis.
参考文献 | 相关文章 | 多维度评价
20. Effects of low ambient temperatures and dietary vitamin C supplementation on pulmonary vascular remodeling and hypoxic gene expression of 21-d-old broilers
ZENG Qiu-feng, YANG Xia, ZHENG Ping, ZHANG Ke-ying, LUO Yu-heng, DING Xue-mei, BAI Shi-ping, WANG Jian-ping, XUAN Yue, SU Zhuo-wei
Journal of Integrative Agriculture    2016, 15 (1): 183-190.   DOI: 10.1016/S2095-3119(14)60968-0
摘要1855)      PDF    收藏
The objective of this study was to evaluate the effects of low ambient temperature (LAT) and dietary vitamin C (VC) supplementation on pulmonary vascular remodeling (PVR) and the relative expression of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and its receptor 2 (VEGFR-2) mRNA of lungs in 21-d-old broilers. 400 1-d-old male Cobb broilers were assigned randomly to 4 treatments as follows for 21 d: 1) LAT and a basal diet; 2) LAT and a basal diet supplemented with 1 000 mg kg–1 VC (LAT+VC); 3) normal ambient temperature (NAT) and a basal diet; 4) NAT and a basal diet supplemented with 1 000 mg kg–1 VC (NAT+VC). Each treatment was composed of 10 replicates of 10 birds per replicate. Samples of lung were collected after the broilers were killed at d 21. LAT increased the ratio of vessel wall area to vessel total area (WA/TA, %) and mean media thickness in pulmonary arterioles (mMTPA, %) (P<0.05). Dietary VC supplementation decreased mMTPA (P<0.05), but had no effect on the WA/TA. LAT increased (P<0.05) the relative mRNA expression of HIF-1α, VEGF and VEGFR-2, while adding VC to the diet could decrease (P<0.05) their relative mRNA expression. A significant positive correlation existed between the level of VEGF mRNA expression and the value of WA/WT (P<0.05) or mMTPA (P<0.05). These results suggested LAT resulted in pulmonary vascular remodeling, and the increase of HIF-1α, VEGF and VEGFR-2 mRNA expression, and dietary VC supplementation can alleviate pulmonary vascular remodeling in broiler by affecting these gene expression.
参考文献 | 相关文章 | 多维度评价
21. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China
LIU Dan, WANG Jia-yu, WANG Xiao-xue, YANG Xian-li, SUN Jian, CHEN Wen-fu
Journal of Integrative Agriculture    2015, 14 (5): 811-822.   DOI: 10.1016/S2095-3119(14)60898-4
摘要2350)      PDF    收藏
Abundant genetic diversity and rational population structure of germplasm benefit crop breeding greatly. To investigate genetic variation among geographically diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars collected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 alleles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among all individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three allelic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and will be used directly for japonica rice breeding in future.
参考文献 | 相关文章 | 多维度评价
22. An asymmetric membrane of polyimide 6FDA-BDAF and its pervaporation desulfurization for n-heptane/thiophene mixtures
YANG Xiang-dong, YE Hong, LI Yan-ting, LI Juan, LI Ji-ding, ZHAO Bing-qiang, LIN Yang-zheng
Journal of Integrative Agriculture    2015, 14 (12): 2529-2537.   DOI: 10.1016/S2095-3119(15)61213-8
摘要1328)      PDF    收藏
Polyimide (PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4´-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexafluoropropane (BDAF) by the two-step polymerization method. The polymer was proved to be polyimide 6FDA-BDAF by the Fourier transform infrared (FT-IR), the 1H-NMR and 19F-NMR spectra. An asymmetric membrane was prepared with the synthesized polyimide 6FDA-BDAF, it was porous in the 50 μm height bulk and dense in a 3–5 μm height surface. The membrane was used to separate n-heptane/ thiophene mixtures by pervaporation with sulfur (S) contents from 50 to 900 μg g–1. The total flux was enlarged from 7.96 to 37.61 kg m–2 h–1 with temperature increasing from 50 to 90°C. The membrane’s enrichments factor for thiophene were about 3.13 and dependent on the experimental conditions. The experimental results demonstrated that polyimide 6FDA-BDAF would be a potential membrane material for desulfurization and controlled release of the S-containing fertilizer.
参考文献 | 相关文章 | 多维度评价
23. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil
LI Juan, LI Yan-ting, YANG Xiang-dong, ZHANG Jian-jun, LIN Zhi-an, ZHAO Bing-qiang
Journal of Integrative Agriculture    2015, 14 (12): 2500-2511.   DOI: 10.1016/S2095-3119(15)61229-1
摘要2216)      PDF    收藏
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control (CK), a commonly used application rate of inorganic fertilizer treatment (NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment (NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment (NPKS). Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term (NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only (NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness (S) and structural diversity (H). Overall utilization of carbon sources by soil microbial communities (average well color development, AWCD) and microbial substrate utilization diversity and evenness indices (H’ and E) indicated that long-term inorganic fertilizer with organic amendments incorporated (NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis (PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis (RDA) indicated that soil organic carbon (SOC) availability, especially soil microbial biomass carbon (Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China’s soil resource.
参考文献 | 相关文章 | 多维度评价
24. Geographic Variation of Rice Yield Response to Past Climate Change in China
YANG Jie, XIONG Wei, YANG Xiao-guang, CAO Yang , FENG Ling-zhi
Journal of Integrative Agriculture    2014, 13 (7): 1586-1598.   DOI: 10.1016/S2095-3119(14)60803-0
摘要1726)      PDF    收藏
Previous studies demonstrated climate change had reduced rice yield in China, but the magnitude of the reduction and the spatial variations of the impact have remained in controversy to date. Based on a gridded daily weather dataset, we found there were obvious changes in temperatures, diurnal temperature range, and radiation during the rice-growing season from 1961 to 2010 in China. These changes resulted in a significant decline of simulated national rice yield (simulated with CERES-Rice), with a magnitude of 11.5%. However, changes in growing-season radiation and diurnal temperature range, not growing-season temperatures, contributed most to the simulated yield reduction, which confirmed previous estimates by empirical studies. Yield responses to changes of the climatic variables varied across different rice production areas. In rice production areas with the mean growing-season temperature at 12-14°C and above 20°C, a 1°C growing-season warming decreased rice yield by roughly 4%. This decrease was partly attributed to increased heat stresses and shorter growth period under the warmer climate. In some rice areas of the southern China and the Yangtze River Basin where the rice growing-season temperature was greater than 20°C, decrease in the growing-season radiation partly interpreted the widespread yield decline of the simulation, suggesting the significant negative contribution of recent global dimming on rice production in China’s main rice areas. Whereas in the northern rice production areas with relatively low growing-season temperature, decrease of the diurnal temperature range was identified as the main climatic contributor for the decline of simulated rice yield, with larger decreasing magnitude under cooler areas.
参考文献 | 相关文章 | 多维度评价
25. The Effects of Climate Change on the Planting Boundary and Potential Yield for Different Rice Cropping Systems in Southern China
YE Qing, YANG Xiao-guang, LIU Zhi-juan, DAI Shu-wei, LI Yong, XIE Wen-juan, CHEN Fu
Journal of Integrative Agriculture    2014, 13 (7): 1546-1554.   DOI: 10.1016/S2095-3119(14)60809-1
摘要1682)      PDF    收藏
Based on climate data from 254 meteorological stations, this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010. The results indicated a significant northward shift and westward expansion of northern boundaries for rice planting in the southern China. Compared with the period of 1951-1980, the average temperature during rice growing season in the period of 1981-2010 increased by 0.4°C, and the northern planting boundaries for single rice cropping system (SRCS), early triple cropping rice system (ETCRS), medium triple cropping rice system (MTCRS), and late triple cropping rice system (LTCRS) moved northward by 10, 30, 52 and 66 km, respectively. In addition, compared with the period of 1951-1980, the suitable planting area for SRCS was reduced by 11% during the period of 1981-2010. However, the suitable planting areas for other rice cropping systems increased, with the increasing amplitude of 3, 8, and 10% for ETCRS, MTCRS and LTCRS, respectively. In general, the light and temperature potential productivity of rice decreased by 2.5%. Without considering the change of rice cultivars, the northern planting boundaries for different rice cropping systems showed a northward shift tendency. Climate change resulted in decrease of per unit area yield for SRCS and the annual average yields of ETCRS and LTCRS. Nevertheless, the overall rice production in the entire research area showed a decreasing trend even with the increasing trend of annual average yield for MTCRS.
参考文献 | 相关文章 | 多维度评价
26. Fine Mapping and Candidate Gene Analysis of Resistance Gene RSC3Q to Soybean mosaic virus in Qihuang 1
Zheng gui-jie, Yang Yong-qing, Ma Ying, Yang Xiao-feng, Chen Shan-yu, Ren Rui, Wang Da-gang, Yang Zhong-lu , ZhI hai-jian
Journal of Integrative Agriculture    2014, 13 (12): 2608-2615.   DOI: 10.1016/S2095-3119(13)60738-8
摘要1580)      PDF    收藏
Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the fine mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found flanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that five genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.
参考文献 | 相关文章 | 多维度评价
27. Phenolic Profiles and Antioxidant Activity of Buckwheat (Fagopyrum esculentum Möench and Fagopyrum tartaricum L. Gaerth) Hulls, Brans and Flours
LI Fu-hua, YUAN Ya, YANG Xiao-lan, TAO Shu-ying , MING Jian
Journal of Integrative Agriculture    2013, 12 (9): 1684-1693.   DOI: 10.1016/S2095-3119(13)60371-82012-10-19
摘要1700)      PDF    收藏
The extracts from hulls, brans and flours of Fagopyrum esculentum Möench (FEM, three varieties) and Fagopyrum tartaricum L. Gaerth (FTG, seven varieties) were screened for free and bound phenolic content or total phenolic content (TPC), as well as 1,1 diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and reducing power. Free phenolics were predominant in buckwheat hulls, brans and flours. FEM hulls extract exhibited the highest reducing power and DPPH free radical scavenging activity with the average EC50 84.54 μg mL-1 and IC50 11.54 μg mL-1 respectively, FTG brans extract had the highest average TPC (24.87 mg GAE g-1 DW), and FEM flours extract showed the lowest TPC, reducing power and radical scavenging activity. Furthermore, the correlations among TPC, DPPH free radical scavenging activity and reducing power of all the samples were investigated. The rank correlation coefficient (rs) between reducing power and DPPH free radical scavenging activity of buckwheat hulls, between TPC and DPPH free radical scavenging activity of buckwheat flours were 0.76 and 0.79, respectively (P<0.05). However, there is no significant correlation between the remaining indexes of hulls and flours, as well as the ten buckwheat brans. This result indicated that some non-phenolic compounds also contributed to the total antioxidant activity in hulls, brans and flours of buckwheats. This study demonstrated that buckwheat hulls and brans, rather than flours, are good source of antioxidants.
参考文献 | 相关文章 | 多维度评价
28. Statistic Analysis on Quantitative Characteristics for Developing the DUS Test Guideline of Ranunculus asiaticus L.
LIU Yan-fang, ZHANG Jian-hua, Lü Bo, YANG Xiao-hong, LI Yan-gang, WANG Ye, WANGJiang-min, ZHANG Hui, GUAN Jun-jiao
Journal of Integrative Agriculture    2013, 12 (6): 971-978.   DOI: 10.1016/S2095-3119(13)60317-2
摘要1815)      PDF    收藏
Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.
参考文献 | 相关文章 | 多维度评价
29. Variation Characteristics of Hydrothermal Resources Effectiveness Under the Background of Climate Change in Southern Rice Production Area of China
YE Qing, YANG Xiao-guang, DAI Shu-wei, LI Yong , GUO Jian-ping
Journal of Integrative Agriculture    2013, 12 (12): 2260-2279.   DOI: 10.1016/S2095-3119(13)60403-7
摘要1070)      PDF    收藏
The spatiotemporal characteristics of hydrothermal resources in southern rice production area of China have changed under the background of climate change, and this change would affect the effectiveness of hydrothermal resources during local rice growing period. According to the cropping system subdivision in southern rice production area of China during 1980s, this study used climate data from 254 meteorological stations and phonological data from 168 agricultural observation stations in the south of China, and adopted 6 international evaluation indices about the effectiveness of hydrothermal resources to analyze the temporal and spatial characteristics of hydrothermal resources during the growing period of single cropping rice system and double cropping rice system for 16 planting zones in the whole study area. The results showed that: in southern rice production area of China, the effectiveness of thermal resources of single cropping rice area (SCRA) was less than that of double cropping rice area (DCRA), whereas the effectiveness of thermal resources of both SARA and DCRA showed a decreasing trend. The index value of effective precipitation satisfaction of SCRA was higher than that of DCRA, nevertheless the index value of effective precipitation satisfaction of both SCRA and DCRA showed a decreasing trend. There was a significant linear relationship between effective thermal resource and water demand, likely water demand increased by 18 mm with every 100°C d increase of effective heat. Effective precipitation satisfaction index (EPSI) showed a negative correlation with effective heat, yet showed a positive correlation with effective precipitation. EPSI reduced by 1% when effective heat resource increased by 125°C d. This study could provide insights for policy makers, land managers or farmers to improve water and heat resource uses and rationally arrange rice production activities under global climate change condition.
参考文献 | 相关文章 | 多维度评价
30. Physicochemical and Sensory Properties of japonica Rice Varied with Production Areas in China
YANG Xiao-yu, LIN Zhao-miao, LIU Zheng-hui, Md A Alim, BI Jun-guo, LI Gang-hua, WANGQiang-sheng, WANG Shao-hua , DING Yan-feng
Journal of Integrative Agriculture    2013, 12 (10): 1748-1756.   DOI: 10.1016/S2095-3119(13)60338-X
摘要1644)      PDF    收藏
Northeast of China and Jiangsu Province are major production areas of japonica rice in China. Rice from northeast of China is well-known for its good-eating and appearance quality, and that from Jiangsu Province is viewed as inferior. However, little is known concerning the difference in physicochemical and sensory properties of rice between the major two production areas. Analysis of 16 commercial rice samples showed marked differences in physicochemical properties, including chalky grain rate, contents of amylose and protein and pasting properties between the two main areas. Northeastern rice contained more shortchain amylopectin as compared with Jiangsu rice. However, Jiangsu rice is comparable to northeastern rice in terms of sensory quality including overall acceptability and textural properties of springiness, stickiness and hardness as evaluated by trained panel. Our results indicated the limitation of conventional index of physicochemical properties, and suggested the necessity of identification of new factors controlling rice sensory property. In addition, the taste analyzer from Japan demonstrates limitation in distinguishing the differences between northeastern and Jiangsu rice, and therefore needs localization to fit China.
参考文献 | 相关文章 | 多维度评价