期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat
MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian
Journal of Integrative Agriculture    2021, 20 (1): 46-54.   DOI: 10.1016/S2095-3119(19)62830-3
摘要173)      PDF    收藏

蔗糖非发酵相关蛋白激酶2(SnRK2)是植物特有的一类丝氨酸/苏氨酸蛋白激酶,其能够应对大量不利的环境刺激。之前研究报道了小麦TaSnRK2.4响应非生物逆境胁迫,提高了转基因拟南芥的多重抗性。本研究将揭示TaSnRK2.4的抗逆机理并发掘新的功能。TaSnRK2.4s分别被定位于3A、3B和3D染色体,这3种基因组序列均被克隆。多态性检测结果表明,TaSnRK2.4-3ATaSnRK2.4-3B分别有1处和13处变异位点,TaSnRK2.4-3D未发现变异位点。基于其中3处变异位点,开发了标记2.4AM1、2.4BM1和2.4BM2。关联分析结果表明,TaSnRK2.4-3ATaSnRK2.4-3B均与千粒重显著关联,其中SNP3A-T和SNP3B-C是高千粒重的优异等位变异。酵母双杂交和荧光素酶互补成像试验表明,TaSnRK2.4和逆境响应蛋白TaLTP3互作,进而得出TaSnRK2.4通过激活TaLTP3参与抗逆。我们的研究显示了TaSnRK2.4在增产抗逆方面具有巨大潜力。


参考文献 | 相关文章 | 多维度评价
2. dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat
HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian
Journal of Integrative Agriculture    2020, 19 (6): 1543-1553.   DOI: 10.1016/S2095-3119(19)62683-3
摘要119)      PDF    收藏
Nitrate transporters (NRTs) are regulators of nitrate assimilation and transport.  The genome sequences of TaNRT2L12-A, -B and -D were cloned from wheat (Triticum aestivum L.), and polymorphisms were analyzed by sequencing.  TaNRT2L12-D in a germplasm population was highly conserved.  However, 38 single nucleotide polymorphisms (SNPs) in TaNRT2L12-A coding region and 11 SNPs in TaNRT2L12-B coding region were detected.  Two derived cleaved amplified polymorphic sequences (dCAPS) markers A-CSNP1 and A-CSNP2 were developed for TaNRT2L12-A based on SNP-351 and SNP-729, and three haplotypes were identified in the germplasm population.  B-CSNP1 and B-CSNP2 were developed for TaNRT2L12-B based on SNP-237 and SNP-1 227, and three haplotypes were detected in the germplasm population.  Association analyses between the markers and agronomic traits in 30 environments and phenotypic comparisons revealed that A-CSNP2-A is a superior allele of shorter plant height (PH), length of penultimate internode (LPI) and peduncle length (PL), B-CSNP2-G is a superior allele of higher grain number per spike (GNS).  Hap-6B-1 containing both superior alleles B-CSNP1-C and B-CSNP2-A is a superior haplotype of 1 000-grain weight (TGW).  Expression analysis showed that TaNRT2L12-B is mainly expressed in the root base and regulated by nitrate.  Therefore, TaNRT2L12 may be involved in nitrate transport and signaling to regulate TGW in wheat.  The superior alleles and dCAPS markers of TaNRT2L12-A/B are beneficial to genetic improvement and germplasm enhancement with molecular markers-assisted selection. 
 
参考文献 | 相关文章 | 多维度评价
3. A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis
XU Qiao-fang, MAO Xin-guo, WANG Yi-xue, WANG Jing-yi, XI Ya-jun, JING Rui-lian
Journal of Integrative Agriculture    2018, 17 (03): 507-516.   DOI: 10.1016/S2095-3119(17)61681-2
摘要687)      PDF    收藏
The stress-associated protein (SAP) multigene family is conserved in both animals and plants.  Its function in some animals and plants are known, but it is yet to be deciphered in wheat (Triticum aestivum L.).  We identified the wheat gene TaSAP17-D, a member of the SAP gene family with an AN1/AN1 conserved domain.  Subcellular localization indicated that TaSAP17-D localized to the nucleus, cytoplasm, and cell membrane.  Expression pattern analyses revealed that TaSAP17-D was highly expressed in seedlings and was involved in NaCl response, polyethylene glycol (PEG), cold, and exogenous abscisic acid (ABA).  Constitutive expression of TaSAP17-D in transgenic Arabidopsis resulted in enhanced tolerance to salt stress, confirmed by improved multiple physiological indices and significantly upregulated marker genes related to salt stress response.  Our results suggest that TaSAP17-D is a candidate gene that can be used to protect crop plants from salt stress.  
参考文献 | 相关文章 | 多维度评价
4. Polymorphism and association analysis of a drought-resistant gene TaLTP-s in wheat
LI Qian, WANG Jing-yi, Nadia Khan, CHANG Xiao-ping, LIU Hui-min, JING Rui-lian
Journal of Integrative Agriculture    2016, 15 (06): 1198-1206.   DOI: 10.1016/S2095-3119(15)61189-3
摘要1494)      PDF    收藏
   Lipid transfer protein (LTP) is a kind of small molecular protein, which is named for its ability to transfer lipid between cell membranes. It has been proved that the protein is involved in the responding to abiotic stresses. In this study, TaLTP-s, a genomic sequence of TaLTP was isolated from A genome of wheat (Triticum aestivum L). Sequencing analysis exhibited that there was no diversity in the coding region of TaLTP-s, but seven single nucleotide polymorphisms (SNPs) and 1 bp insertion/deletion (InDel) were detected in the promoter regions of different wheat accessions. Nucleotide diversity (π) in the region was 0.00033, and linkage disequilibrium (LD) extended over almost the entire TaLTP-s region in wheat. The dCAPS markers based on sequence variations in the promoter regions (SNP-207 and SNP-1696) were developed, and three haplotypes were identified based on those markers. Association analysis between the haplotypes and agronomic traits of natural population consisted of 262 accessions showed that three haplotypes of TaLTP-s were significantly associated with plant height (PH). Among the three haplotypes, HapIII is considered as the superior haplotype for increasing plant height in the drought stress environments. The G variance at the position of 207 bp could be a superior allele that significantly increased number of spikes per plant (NSP). The functional marker of TaLTP-s provide a tool for marker-assisted selection regarding to plant height and number of spikelet per plant in wheat.
参考文献 | 相关文章 | 多维度评价