期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1.

MYB转录因子的系统分析及LuMYB216在亚麻花花色苷生物合成调控中的作用

XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian
Journal of Integrative Agriculture    2023, 22 (8): 2335-2345.   DOI: 10.1016/j.jia.2023.04.046
摘要227)      PDF    收藏

色苷是影响植物颜色和营养品质的重要色素。MYBs在植物花色苷的合成和积累中起着重要作用。然而,MYB转录因子在亚麻花的花色苷合成中的调节作用尚不清楚。在本研究中,亚麻基因组中鉴定出402MYB转录因子这些MYB成员在15条染色体上分布不均。其中,R2R3-LuMYB成员被分为32个亚家族。实时荧光定量qRT-PCR)分析显示,进化树相邻亚家族中的7R2R3-LuMYB基因具有相似的表达模式,其中LuMYB216在不同颜色的花瓣中高度表达。此外,对LuMYB216在亚麻中进行基因编辑观察到突变体植物的花瓣颜色、花药颜色和种皮颜色明显浅于野生型植测定lumyb216突变体植株的花瓣和种皮的花色苷,发现含量较野生型显著降低。相关分析表明,LuMYB216上游调因子bHLH30共表达,且显著正相关。本研究系统分析了亚麻中的MYB基因家族,为研究LuMYB216在亚麻花的花色苷合成中的调控奠定了基础。

参考文献 | 相关文章 | 多维度评价
2. Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae
PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang
Journal of Integrative Agriculture    2017, 16 (10): 2168-2176.   DOI: 10.1016/S2095-3119(16)61570-8
摘要738)      PDF    收藏
Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L–1 NaCl stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L–1 NaCl stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na+). Yeast complementation assay showed that IbHKT1 could take up K+ in 50 mmol L–1 K+ medium without the presence of NaCl. Moreover, Na+ uptake significantly increased in yeast overexpressing IbHKT1. These results showed that IbHKT1 transporter could have K+-Na+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.
参考文献 | 相关文章 | 多维度评价
3. Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions
WANG Jiang-xu, SUN Jian, LI Cheng-xin, LIU Hua-long, WANG Jing-guo, ZHAO Hong-wei, ZOU De-tang
Journal of Integrative Agriculture    2016, 15 (12): 2688-2702.   DOI: 10.1016/S2095-3119(16)61427-2
摘要1019)      PDF    收藏
    Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the lodging resistance and the high yield potential. Meanwhile, PH is often constrained by water supply over the entire growth period. In this study, a recombinant inbred line (RIL) derived from Xiaobaijingzi and Kongyu 131 strains grown under drought stress and with normal irrigation over 2 yr (2013 and 2014), respectively (regarded as four environments), was used to dissect the genetic basis of PH by developmental dynamics QTL analysis combined with QTL×environment interactions. QTLs with net effects excluding the accumulated effects were detected to explore the relationship between gene×gene interactions and gene×environment interactions in specific growth period. A total of 26 additive QTLs (A-QTLs) and 37 epistatic QTLs (E-QTLs) associated with PH were detected by unconditional and conditional mapping over seven growth periods. qPH-2-3, qPH-4-3, qPH-6-1, qPH-7-1, and qPH-12-5 could be detected by both unconditional and conditional analyses. qPH-4-3 and qPH-7-5 were detected in four stages (periods) to be sequentially expressed QTLs controlling PH continuous variation. QTLs with additive effects (A-QTLs) were mostly expressed in the period S3|S2 (the time interval from stages 2 to 3), and QTL×environment interactions performed actively in the first three stages (periods) which could be an important developmental period for rice to undergo external morphogenesis during drought stress. Several QTLs showed high adaptability for drought stress and many QTLs were closely related to the environments such as qPH-3-5, qPH-2-2 and qPH-6-1. 72.5% of the QTLs with a and aa effects detected by conditional analysis were under drought stress, and the PVE of QTLs detected by conditional analysis under drought stress were also much higher than that under normal irrigation. We infer that environments would influence the detection results and sequential expression of genes was highly influenced by environments as well. Many QTLs (qPH-1-2, qPH-3-5, qPH-4-1, qPH-2-3) coincident with previously identified drought resistance genes. The result of this study is helpful to elucidating the genetic mechanism and regulatory network underlying the development of PH in rice and providing references to marker assisted selection.
参考文献 | 相关文章 | 多维度评价
4. Experimental and genomic evidence for the indica-type cytoplasmic effect in Oryza sativa L. ssp. japonica
LIU You-hong, TANG Liang, XU Quan, MA Dian-rong, ZHAO Ming-hui, SUN Jian, CHEN Wen-fu
Journal of Integrative Agriculture    2016, 15 (10): 2183-2191.   DOI: 10.1016/S2095-3119(15)61190-X
摘要1501)      PDF    收藏
    Cytoplasmic effects are important agronomical phenomena that have generated widespread interest in both theory and application. In the present study, five high yield rice cultivars (Oryza sativa L. ssp. japonica) in large-scale cultivation in northeast China were determined to possess Oryza sativa L. ssp. indica-type cytoplasm using cytoplasmic subspecies-specific molecular markers. This was confirmed by cytoplasmic genome-wide single nucleotide polymorphisms (SNPs) and functional gene sequencing. Two of these five japonica cultivars were core breeding parents with high yield and the other three were super-high-yield varieties registered by the Ministry of Agriculture of China. We constructed nuclear substitution lines to further demonstrate whether and how this indica-type cytoplasm contributed to yield improvement by comparing yield components. The results showed that under the same japonica nuclear background, the lines with indica-type cytoplasm had a significant decrease in tillers in exchange for increased grain number per panicle compared with their recurrent parents. Our results implied that botanical basis of this cytoplasmic effect was to reduce the plant’s branching differentiation to produce more floral organs under the constant nutrition. Our findings open another door for the utilization of inter-subspecific hybridization for the improvement of rice cultivar.
参考文献 | 相关文章 | 多维度评价
5. Dwarfing apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes
ZHOU Bei-bei, SUN Jian, LIU Song-zhong, JIN Wan-mei, ZHANG Qiang, WEI Qin-ping
Journal of Integrative Agriculture    2016, 15 (05): 1025-1033.   DOI: 10.1016/S2095-3119(15)61298-9
摘要1247)      PDF    收藏
  The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfig apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series (SH series) showed better heat stress resistance than those of Budagovski 9 (B9), Cornell-Geneva 24 (CG24), and Malling 26 (M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content (LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no signifiant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic effiiency (Pn ) of CG24, there was no signifiant increase in leaf conductivity, and 7 days after the treatment, the Pn of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment (OA), which was reflcted by smaller reductions in leaf relative water content (RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks
参考文献 | 相关文章 | 多维度评价
6. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field
GAO Miao, ZHOU Jian-jiao, WANG En-tao, CHEN Qian, XU Jing, SUN Jian-guang
Journal of Integrative Agriculture    2015, 14 (9): 1855-1863.   DOI: 10.1016/S2095-3119(14)60932-1
摘要1700)      PDF    收藏
Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identified as Burkholderia sp. based on 16S rDNA sequence analysis, as well as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability; inhibited the growth of Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae; and produced small quantities of indole acetic acid (IAA). In green house experiments, significant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the field experiments, Burkholderia sp. 7016 enhanced the tomato yield and significantly promoted activities of soil urease, phosphatase, sucrase, and catalase. All these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.
参考文献 | 相关文章 | 多维度评价
7. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China
LIU Dan, WANG Jia-yu, WANG Xiao-xue, YANG Xian-li, SUN Jian, CHEN Wen-fu
Journal of Integrative Agriculture    2015, 14 (5): 811-822.   DOI: 10.1016/S2095-3119(14)60898-4
摘要2350)      PDF    收藏
Abundant genetic diversity and rational population structure of germplasm benefit crop breeding greatly. To investigate genetic variation among geographically diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars collected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 alleles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among all individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three allelic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and will be used directly for japonica rice breeding in future.
参考文献 | 相关文章 | 多维度评价
8. Effect of Partial Root-Zone Irrigating Deuterium Oxide on the Properties of Water Transportation and Distribution in Young Apple Trees
LIU Song-zhong, ZHANG Qiang, LIU Jun, SUN Jian , WEI Qin-ping
Journal of Integrative Agriculture    2014, 13 (6): 1268-1275.   DOI: 10.1016/S2095-3119(13)60623-1
摘要1940)      PDF    收藏
Partial root-zone irrigation (PRI) has been proved to be an optimal water-saving irrigation technology, however, few studies were done on water transportation and distribution under PRI. The present study was performed to investigate the water transportation and distribution among the wet and dry root-zones and the shoot using deuterium water (D2O) in 1/4 root-zone PRI experiment. It also aimed to determine and analyze the D2O relative abundance within different types of roots and shoots. The results indicated that water could be transported from roots in wet root-zone to roots in dry root-zone and shoots within 2 h after irrigation. Water transportation in roots of wet-zone was carried out by absorbing root, 1-2 mm root, 2-5 mm root, and >5 mm root progressively, while through a reverse process in three dry root-zones. In shoots, water was transported to trunk, central trunk, annual branches, shoot and leaf progressively. Thus in the young apple trees subjected to PRI, water was distributed first in the roots, including the roots in the wet and dry root-zones, to satisfy the water need of roots itself, and then transported to the shoot within hours of irrigation.
参考文献 | 相关文章 | 多维度评价
9. Low Light Stress Down-Regulated Rubisco Gene Expression and Photosynthetic Capacity During Cucumber (Cucumis sativus L.) Leaf Development
SUN Jian-lei, SUI Xiao-lei, HUANG Hong-yu, WANG Shao-hui, WEI Yu-xia , ZHANG Zhenxian
Journal of Integrative Agriculture    2014, 13 (5): 997-1007.   DOI: 10.1016/S2095-3119(13)60670-X
摘要1951)      PDF    收藏
Low light stress is one of the most important factors affecting photosynthesis and growth in winter production of cucumber (Cucumis sativus L.) in solar greenhouses in northern China. Here, two genotypes of cucumber (Deltastar and Jinyan 2) are used to determine the effect of low light stress on Rubisco expression and photosynthesis of leaves from emergence to senescence. During leaf development, the net photosynthetic rate (PN), stomatal conductance (gs), Rubisco initial activity and activation state, transcript levels of rbcL and rbcS, and the abundance of rbcL and rbcS DNA in these two genotypes increase rapidly to reach maximum in 10-20 d, and then decrease gradually. Meanwhile, the actual photosystem II efficiency (ФPSII) of cucumber leaves slowly increased in the early leaf developing stages, but it declined quickly in leaf senescent stages, accompanied by an increased non-photochemical quenching (NPQ). Moreover, PN, gs, initial Rubisco activity, and abundance of protein, mRNA and DNA of Rubisco subunits of leaves grown under 100 μmol m-2 s-1 are lower, and require more time to reach their maxima than those grown under 600 μmol m-2 s-1 during leaf development. All these results suggest that lower photosynthetic capacity of cucumber leaves from emergence to senescence under low light stress is probably due to down-regulated Rubisco gene expression in transcript and protein levels, and decreased initial and total activity as well as activation state of Rubisco. Deltastar performs better than Jinyan 2 under low light stress.
参考文献 | 相关文章 | 多维度评价