[1]Bhattacharya P, Welch A H, Stollenwerk K G, McLaughlinM S, Bundschunh J, Panaullah G. 2007. Arsenic in theenvironment: biology and chemistry. Science of theTotal Environment, 379, 109-120[2]Bhattacharyya P, Tripathy S, Kim K, Kim S H. 2008. Arsenicfractions and enzyme activities in arsenic-contaminatedsoils by groundwater irrigation in West Bengal.Ecotoxicology and Environmental Safety, 71, 149-156[3]Cao H, Sun H, Yang H, Sun B, Zhao Q G. 2003. A review:soil enzyme activity and its indication for soil quality.Chinese Journal of Applied & Environmental Biology,9, 105-109[4](in Chinese)Dagnac T, Jeannot R, Mouvet C, Baran N. 2002.Determination of oxanilic and sulfonic acid metabolitesof acetochlor in soils by liquid chromatographyelectrosprayionization mass spectrometry. Journalof Chromatography, 957, 69-77[5]Dick R P. 1994. Soil enzyme activities as indicators of soilquality. In: Doran J W, Coleman D C, Bezdicek D F,Stewart B A, eds., Defining Soil Quality for aSustainable Environment. SSSA Special Publication35. Soil Science Society of America, Madison. pp. 107-124[6]Dick R P. 1997. Soil enzyme activities as integrativeindicators of soil health. In: Pankhurst C E, Doube B M,Gupta V V S R, eds., Biological Indicators of SoilHealth. CAB International, Wallingford, New York. pp.121-156[7]Dictor M C, Baran N, Gautier A, Mouvet C. 2008. Acetochlormineralization and fate of its two major metabolites intwo soils under laboratory conditions. Chemosphere,71, 663-670[8]Feron V J, Groten J P. 2002. Toxicological evaluation ofchemical mixtures. Food and Chemical Toxicology, 40,825-839[9]Gao Y, Zhou P, Mao L, Zhi Y, Zhang C H, Shi W J. 2010.Effects of plant species coexistence on soil enzymeactivities and soil microbial community structure underCd and Pb combined pollution. Journal ofEnvironmental Sciences, 22, 1040-1048[10]Ghosh K, Bhattacharyya P, Pal R. 2004. Effect of arseniccontamination on microbial biomass and its activities.Environment International, 30, 491-499[11]He W X, Ma A S, Wu Y J, Zhu M E. 2004. Effect of arsenico n s o i l u r e a s e a c t i v i t y . Chinese Journalof Applied Ecology, 15, 895-898 (in Chinese)[12]Irha N, Slet J, Petersell V. 2003. Effect of heavy metals andPAH on soil assessed via dehydrogenase assay.Environment International, 28, 779-782[13]Liu H J, Zhan X M, Liu W P. 2005. Influence of fouracetanilide herbicides on soil enzyme activity. ChinaEnvironmental Science, 25, 611-614 (in Chinese)[14]Ma J, He R H, Jiang X Y. 2008. Effects of single and combinedpollution of chlorpyrifos and acetochlor on soil enzymeactivity and microbial biomass carbon. Journal ofEcology and Rural Environment, 24, 57-60[15]Maliszewska-Kordybach B, Smreczak B. 2003. Habitatfunction of agricultural soils as affected by heavy metalsand polycyclic aromatic hydrocarbons contamination.Environment International, 28, 719-728[16]Omar S A, Abdel-Sater M A. 2001. Microbial populationsand enzyme activities in soil treated with pesticides.Water, Air, & Soil Pollution, 127, 49-63[17]Poorna V, Kulkarni P R. 1995. A study of inulinaseproduction in Aspergillus niger using fractional design.Bioresource Technology, 54, 315-320[18]Shen G Q, Lu Y T, Hong J B. 2006. Combined effect ofheavy metals and polycyclic aromatic hydrocarbonson urease activity in soil. Ecotoxicology andEnvironmental Safety, 63, 474-480[19]Shen G Q, Lu Y T, Zhou Q X, Hong J B. 2005. Interaction ofpolycyclic aromatic hydrocarbons and heavy metalson soil enzyme. Chemosphere, 61, 1175-1182[20]Sikkema J, de Bont J A M, Poolman B. 1995. Mechanisms ofmembrane toxicity of hydrocarbons. MicrobiologicalReview, 59, 201-222[21]Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L NC. 1995. A simply kinetic approach to derive theecological dose value, ED50, for the assessment of Cr(V1) toxicity to soil biological properties. Soil Biology& Biochemistry, 27, 801-810[22]Speir T W, Kettles H A, Parshotam A, Searle P L, Vlaar L NC. 1999. Simply kinetic approach to determine thetoxicity of As (V) to soil biological properties. SoilBiology & Biochemistry, 31, 705-713[23]Sukul P. 2006. Enzymatic activities and microbial biomassin soil as influenced by metalaxyl residues. Soil Biologyand Biochemistry, 38, 320-326[24]Tamaki S, Frankenberger J W T. 1992. Environmentalbiogeochemistry of arsenic. Reviews of EnvironmentalContamination and Toxicology, 24, 79-110[25]Tejada M. 2009. Evolution of soil biological properties afteraddition of glyphosate, diflufenican and glyphosatediflufenican herbicides. Chemosphere, 76, 365-373[26]Tejada M, Parrado J, Hernández T, García C. 2011. Thebiochemical response to different Cr and Cdconcentrations in soils amended with organic wastes.Journal of Hazardous Materials, 185, 204-211[27]Wang S, Mulligan C N. 2006. Occurrence of arseniccontamination in Canada: sources, behavior anddistribution. Science of the Total Environment, 366,701-721[28]Weltje L. 1998. Mixture toxicity and tissues interactions ofCd, Cu, Pb and Zn in earthworms (Olignchaeta) inlaboratory and field soil: a critical evaluation of data.Chemosphere, 36, 2643-2660[29]Xiao N W, Jing B B, Ge F, Liu X. 2006. The fate of herbicideacetochlor and its toxicity to Eisenia fetida underlaboratory conditions. Chemosphere, 62, 1366-1373[30]Ye C. 2003. Environmental behavior of the herbicideacetochlor in soil. Bulletin of Environmental Contamination and Toxicology, 71, 919-923[31]Yokley R A, Mayer L C, Huang S B, Vargo J D. 2002.Analytical method for the determination of metolachlor,acetochlor, alachlor, dimethenamid and theircorresponding ethanesulfonic and oxanillic aciddegradates in water using SPE and LC/ESI-MS/MS.Analytical Chemistry, 74, 3754-3759[32]Zabaloy M C, Gómez M A. 2008. Microbial respiration insoils of the Argentine Pampas after metsulfuron-methyl,2,4-D and glyphosate treatments. Communications inSoil Science and Plant Analysis, 39, 370-385[33]Zhan X H, Wu W Z, Zhou L X, Liang J, Jiang T. 2010.Interactive effect of dissolved organic matter andphenanthrene on soil enzymatic activities. Journal ofEnvironmental Sciences, 22, 607-614[34]Zhang Y M, Wu N, Zhou G Y, Bao W K. 2005. Changes inenzyme activities of spruce (Picea balfouriana) forestsoil as related to burning in the eastern Qinghai-TibetanPlateau. Applied Soil Ecology, 30, 215-225.Zhou Q X. 2004. Ecology of Combined Pollution. ChinaEnvironmental Science Press, Beijing. (in Chinese) |