Abreu E F M, Aragão F J. 2007. Isolation and characterizationof a myo-inositol-1-phosphate synthase gene from yellowpassion fruit (Passiflora edulis f. flavicarpa) expressedduring seed development and environmental stress. Annalsof Botany, 99, 285-292Alexieva V, Sergiev I, Mapelli S, Karanov E. 2001. The effectof drought and ultraviolet radiation on growth and stressmarkers in pea and wheat. Plant, Cell & Environment, 24,1337-1344Alia A, Mohanty P, Matysik J. 2001. Effect of proline on theproduction of singlet oxygen. Amino Acids, 21, 195-200Alia A, Saradhi P P, Mohanty P. 1991. Proline enhances primaryphotochemical activities in isolated thylakoid membranesof Brassica juncea by arresting photoinhibitory damage.Biochemical and Biophysical Research Communications,181, 1238-1244Alia A, Saradhi P P, Mohanty P. 1997. Involvement of prolinein protecting thylakoid membranes against free radicalinducedphotodamage. Journal of Photochemistry andPhotobiology, 38, 253-257Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism,oxidative stress, and signal transduction. Annual Reviewof Plant Biology, 55, 373-399Bieleski R L, Redgwell R J. 1977. Synthesis of sorbitol in apricotleaves. Australian Journal of Plant Physiology, 4, 1-10Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S,Majumder A L. 2006. Introgression of a novel salt-tolerantL-myo-inositol 1-phosphate synthase from Porteresiacoarctata (Roxb.) Tateoka (PcINO1) confers salt toleranceto evolutionary diverse organisms. FEBS Letters, 580,3980-3988Delauney A J, Verma D P S. 1993. Proline biosynthesis andosmoregulation in plants. The Plant Journal, 4, 215-223Deng X M, Hu W, Wei S Y, Zhou S Y, Zhang F, Han J P, ChenL H, Li Y, Feng J L, Fang B, Luo Q C, Li S S, Liu Y Y, YangG X, He G Y. 2013. TaCIPK29, a CBL-interacting proteinkinase gene from wheat, confers salt stress tolerance intransgenic tobacco. PLOS ONE, 8, e69881.Fan W J, Zhang M, Zhang H X, Zhang P. 2012. Improvedtolerance to various abiotic stresses in transgenicsweetpotato (Ipomoea batatas) expressing spinach betainealdehyde dehydrogenase. PLoS ONE, 7, e37344.Fernández-Falcón M, Hernández M, Alvarez C E, BorgesA A. 2006. Variation in nutrition along time and relativechlorophyll content of Leucospermum cordifolium cv. ‘High Gold’, and their relationship with chlorotic sypmptoms.Scientia Horticulturae, 107, 373-379Gao S, Yuan L, Zhai H, Liu C L, He S Z, Liu Q C. 2011.Transgenic sweetpotato plants expressing an LOS5 geneare tolerant to salt stress. Plant Cell, Tissue and OrganCulture, 107, 205-213Gill S S, Tuteja N. 2010. Reactive oxygen species andantioxidant machinery in abiotic stress tolerance in cropplants. Plant Physiology and Biochemistry, 48, 909-930Goswami L, Sengupta S, Mukherjee S, Ray S, MukherjeeR, Majumder A L. 2014. Targeted expression of L-myoinositol1-phosphate synthase from Porteresia coarctata(Roxb.) Tateoka confers multiple stress tolerance intransgenic crop plants. Journal of Plant Biochemistry andBiotechnology, 23, 316-330Hara K, Yagi M, Koizumi N, Kusano T, Sano H. 2000. Screeningof wound-responsive genes identifies an immediate-earlyexpressed gene encoding a highly charged protein inmechanically wounded tobacco plants. Plant and CellPhysiology, 41, 684-691Hare P D, Cress W A. 1997. Metabolic implications of stressinducedproline accumulation in plants. Plant GrowthRegulation, 21, 79-102He S Z, Han Y F, Wang Y P, Zhai H, Liu Q C. 2009. In vitroselection and identification of sweetpotato (Ipomoea batatas(L.) Lam.) plants tolerant to NaCl. Plant Cell, Tissue andOrgan Culture, 96, 69-74Hegeman C E, Good L L, Grabau E A. 2001. Expressionof D-myo-inositol-3-phosphate synthase in soybean.Implications for phytic acid biosynthesis. Plant Physiology,125, 1941-1948Hoagland D R, Arnon D I. 1950. The water-culture methodfor growing plants without soil. California AgriculturalExperiment Station, 347, 1-39Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusion:β-glucuronidase as a sensitive and versatile gene fusionmarker in higher plants. The EMBO Journal, 6, 3901-3907Johnson M D. 1994. The Arabidopsis thaliana myo-inositol1-phosphate synthase (EC 5.5.1.4). Plant Physiology, 105,1023-1024Joshi R, Ramanarao M V, Lee S, Kato N, Baisakh N. 2014.Ectopic expression of ADP ribosylation factor 1 (SaARF1)from smooth cordgrass (Spartina alterniflora Loisel)confers drought and salt tolerance in transgenic rice andArabidopsis. Plant Cell, Tissue and Organ Culture, 117,17-30Joshi R, Ramanarao M V, Baisakh N. 2013. Arabidopsis plantsconstitutively overexpressing a myo-inositol 1-phosphatesynthase gene (SaINO1) from the halophyte smoothcordgrass exhibits enhanced level of tolerance to salt stress.Plant Physiology and Biochemistry, 65, 61-66Kaur H, Verma P, Petla B P, Rao V, Saxena S C, Majee M.2013. Ectopic expression of the ABA-inducible dehydrationresponsivechickpea L-myo-inositol 1-phosphate synthase2 (CaMIPS2) in Arabidopsis enhances tolerance to salinityand dehydration stress. Planta, 237, 321-335Kim S H, Ahn Y O, Ahn M J, Jeong J C, Lee H S, Kwak S S.2013a. Cloning and characterization of an orange gene thatincreases carotenoid accumulation and salt stress tolerancein transgenic sweetpotato cultures. Plant Physiology andBiochemistry, 70, 445-454Kim S H, Kim Y H, Ahn Y O, Ahn M J, Jeong J C, Lee H S, KwakS S. 2013b. Down-regulation of the lycopene ε-cyclase geneincreases carotenoid synthesis via the β-branch-specificpathway and enhances salt-stress tolerance in sweetpotatotransgenic calli. Physiologia Plantarum, 147, 432-442Koca H, Ozdemir F, Turkan I. 2006. Effect of salt stress on lipidperoxidation and superoxide dismutase and peroxidaseactivities of Lycopersicon esculentum and L. pennellii.Biologia Plantarum, 50, 745-748Larson S R, Raboy V. 1999. Linkage mapping of maize andbarley myo-inositol 1-phosphate synthase DNA sequences:Correspondence with a low phytic acid mutation. Theoreticaland Applied Genetics, 99, 27-36Liu D G, He S Z, Song X J, Zhai H, Liu N, Zhang D D, RenZ T, Liu Q C. 2014a. IbSIMT1, a novel salt-inducedmethyltransferase gene from Ipomoea batatas, is involvedin salt tolerance. Plant Cell, Tissue and Organ Culture, 120,701-715 doi: 10.1007/s11240-014-0638-6Liu D G, He S Z, Zhai H, Wang L J, Zhao Y, Wang B, Li R J,Liu Q C. 2014b. Overexpression of IbP5CR enhances salttolerance in transgenic sweetpotato. Plant Cell, Tissue andOrgan Culture, 117, 1-16Liu D G, Wang L J, Liu C L, Song X J, He S Z, Zhai H, Liu QC. 2014c. An Ipomoea batatas iron-sulfur cluster scaffoldprotein gene, IbNFU1, is involved in salt tolerance. PLOSONE, 9, e93935.Liu D G, Wang L J, Zhai H, Song X J, He S Z, Liu Q C. 2014d.A novel α/β-hydrolase gene IbMas enhances salt tolerancein transgenic sweetpotato. PLOS ONE, 9, e115128.Liu Q C, Zhai H, Wang Y, Zhang D P. 2001. Efficient plantregeneration from embryogenic suspension cultures ofsweetpotato. In Vitro Cellular & Developmental Biology-Plant, 37, 564-567Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, HaitN C, Das K P, Majumder A L. 2004. A novel salt-tolerantL-myo-inositol-1-phosphate synthase from Porteresiacoarctata (Roxb.) Tateoka, a halophytic wild rice: Molecularcloning, bacterial overexpression, characterization, andfunctional introgression into tobacco-conferring salttolerance phenotype. The Journal of Biological Chemistry,279, 28539-28552Mishra M K, Chaturvedi P C, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P. 2013. Overexpressionof WsSGTL1 gene of Withania somnifera enhances salttolerance, heat tolerance and cold acclimation ability intransgenic Arabidopsis plants. PLOS ONE, 8, e63064.Munns R, Tester M. 2008. Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59, 651-681De Ronde J A, Cress W A, Krüger G H J, Strasser R J, VanStaden J. 2004. Photosynthetic response of transgenicsoybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology,161, 1211-1224RoyChoudhury A, Roy C, Sengupta D N. 2007. Transgenictobacco plants overexpressing the heterologous lea geneRab16A from rice during high salt and water deficit displayenhanced tolerance to salinity stress. Plant Cell Reports,26, 1839-1859Schmittgen T D, Livak K J. 2008. Analyzing real-time PCRdata by the comparative CT method. Nature Protocols, 3,1101-1108Smirnoff N, Cumbes Q J. 1989. Hydroxyl radical scavengingactivity of compatible solutes. Phytochemistry, 28, 1057-1060Surekha C, Kumari K N, Aruna L V, Suneetha G, Arundhati A,Kishor P B K. 2014. Expression of the Vigna aconitifoliaP5CSF129A gene in transgenic pigeonpea enhancesproline accumulation and salt tolerance. Plant Cell, Tissueand Organ Culture, 116, 27-36Takahashi S, Murata N. 2008. How do environmental stressesaccelerate photoinhibition? Trends in Plant Science, 13,178-182Tan J L, Wang C Y, Xiang B, Han R H, Guo Z F. 2013.Hydrogen peroxide and nitric oxide mediated cold- anddehydration-induced myo-inositol phosphate synthase thatconfers multiple resistances to abiotic stresses. Plant, Cell& Environment, 36, 288-299Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C. 2013a.Molecular cloning and fanctional characterization of a salttolerance-associated gene IbNFU1 from sweetpotato.Journal of Integrative Agriculture, 12, 27-35Wang T Z, Zhang J L, Tian Q Y, Zhao M G, Zhang W H. 2013b.A Medicago truncatula EF-Hand family gene, MtCaMP1, isinvolved in drought and salt stress tolerance. PLOS ONE,8, e58952.Wang Y, Huang J, Gou C B, Dai X, Chen F, Wei W. 2011.Cloning and characterization of a differentially expressedcDNA encoding myo-inositol-1-phosphate synthaseinvolved in response to abiotic stress in Jatropha curcas.Plant Cell, Tissue and Organ Culture, 106, 269-277Wyn Jones R G, Storey R. 1978. Salt stress and comparativephysiology in the Gramineae. II. Glycine betaine andproline accumulation in two salt- and water-stressedbarley cultivars. Australian Journal of Plant Physiology,5, 817-829Yang L, Han H J, Liu M M, Zuo Z J, Zhou K Q, Lü J C, Zhu Y R,Bai Y L, Wang Y. 2013. Overexpression of the Arabidopsisphotorespiratory pathway gene, serine: Glyoxylateaminotransferase (AtAGT1), leads to salt stress tolerancein transgenic duckweed (Lemna minor). Plant Cell, Tissueand Organ Culture, 113, 407-416Yoshida K T, Wada T, Koyama H, Mizobuchi-Fukuoka R, NaitoS. 1999. Temporal and spatial patterns of accumulation ofthe transcript of myo-inositol-1-phosphate synthase andphytin-containing particles during seed development in rice.Plant Physiology, 119, 65-72Yu B, Zhai H, Wang Y P, Zang N, He S Z, Liu Q C. 2007. EfficientAgrobacterium tumefaciens-mediated transformation usingembryogenic suspension cultures in sweetpotato Ipomoeabatatas (L.) Lam. Plant Cell, Tissue and Organ Culture,90, 265-273Zang N, Zhai H, Gao S, Chen W, He S Z, Liu Q C. 2009. Efficientproduction of transgenic plants using the bar gene forherbicide resistance in sweetpotato. Scientia Horticulturae,122, 649-653Zhai H, Liu Q C. 2009. Expression analysis of sweetpotatomyo-inositol-1-phosphate synthase gene. Molecular PlantBreeding, 7, 537-544 (in Chinese)Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S.2012a. Mechanisms of plant salt response: Insights fromproteomics. Journal of Proteome Research, 11, 49-67Zhang H, Liu Y X, Xu Y, Chapman S, Love A J, Xia T. 2012b.A newly isolated Na+/H+ antiporter gene, DmNHX1, conferssalt tolerance when expressed transiently in Nicotianabenthamiana or stably in Arabidopsis thaliana. Plant Cell,Tissue and Organ Culture, 110, 189-200Zhao Q, Zhang H, Wang T, Chen S X, Dai S J. 2013. Proteomicsbasedinvestigation of salt-responsive mechanisms in plantroots. Journal of Proteomics, 82, 230-253Zsigmond L, Szepesi Á, Tari I, Rigó G, Király A, Szabados L.2012. Overexpression of the mitochondrial PPR40 geneimproves salt tolerance in Arabidopsis. Plant Science,182, 87–93. |