Anilkumar K J, Rodrigo-Simón A , Ferré J, Pusztai-Carey M,Sivasupramaniam S, Moar W J. 2008. Production andcharacterization of Bacillus thuringiensis Cry1Ac-resistantcotton bollworm Helicoverpa zea (Boddie). Applied andEnvironmental Microbiology, 74, 462-469Chen M, Zhao J Z, Collins H L, Earle E D, Cao J, Shelton A M2008. A critical assessment of the effects of Bt transgenicplants on parasitoids. PLoS One, 3, e2284.Dai P L, Zhou W, Zhang J, Jiang W Y, Wang Q, Cui H J, Sun JH, Wu Y Y, Zhou T. 2012. The effects of Bt Cry1Ah toxin onworker honeybees (Apis mellifera ligustica and Apis ceranacerana). Apidologie, 43, 384-391Estela A, Escriche B, Ferré J. 2004. Interaction of Bacillusthuringiensis toxins with larval midgut binding sites ofHelicoverpa armigera (Lepidoptera: Noctuidae). Appliedand Environmental Microbiology, 70, 1378-1384Guo S Y, Ye S, Liu Y F, Wei L, Xue J, Wu H F, Song F P, ZhangJ, Wu X A, Huang D F, Rao Z H. 2009. Crystal structure ofBacillus thuringiensis Cry8Ea1: An insecticidal toxin toxicto underground pests, the larvae of Holotrichia parallela.Journal of Structural Biology, 168, 259-266Gahan L J, Pauchet Y, Vogel H, Heckel D G. 2010. An ABCtransporter mutation is correlated with insect resistanceto Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics, 6,e1001248.Gilliland A, Chambers C E, Bone E J, Ellar D J. 2002. Roleof Bacillus thuringiensis Cry1 δ endotoxin binding indetermining potency during lepidopteran larval development.Applied and Environmental Microbiology, 68, 1509-1515Ibrahim M A, Griko N, Junker M, Bulla L A. 2010. Bacillusthuringiensis: A genomics and proteomics perspective.Bioengineered Bugs, 1, 31-50Iracheta M M, Pereyra-Alférez B, Galán-Wong L, Ferré J. 2000.Screening for Bacillus thuringiensis crystal proteins activeagainst the cabbage looper, Trichoplusia ni. Journal ofInvertebrate Pathology, 76, 70-75Kain W C, Zhao J Z, Janmaat A F, Myers J, Shelton A M, WangP. 2004. Inheritance of resistance to Bacillus thuringiensisCry1Ac toxin in a greenhouse-derived strain of cabbagelooper (Lepidoptera: Noctuidae). Journal EconomicEntomology, 97, 2073-2078Lemeshko V V, Orduz S. 2013. Electrical hypothesis of toxicityof the Cry toxins for mosquito larvae. Bioscience Report,33, 125-136Liao C Y, Heckel D G, Akhurst R. 2002. Toxicity of Bacillusthuringiensis insecticidal proteins for Helicoverpa armigeraand Helicoverpa punctigera (Lepidoptera: Noctuidae),major pests of cotton. Journal of Invertebrate Pathology,80, 55-63Luo K, Banks D, Adang M J. 1999. Toxicity, binding, andpermeability analyses of four Bacillus thuringiensis Cry1δ-endotoxins using brush border membrane vesicles ofSpodoptera exigua and Spodoptera frugiperda. Appliedand Environmental Microbiology, 65, 457-464Luttrell R G, Wan L, Knighten K. 1999. Variation in susceptibilityof noctuid (Lepidoptera) larvae attacking cotton andsoybean to purified endotoxin proteins and commercialformulations of Bacillus thuringiensis. Journal of EconomicEntomology, 92, 21-32Ohsawa M, Tanaka M, Moriyama K, Shimazu M, Asano S I,Miyamoto K, Haginoya K, Mitsui T, Kouya T, TaniguchiM, Hori H. 2012. A 50-kilodalton Cry2A peptide is lethalto Bombyx mori and Lymantria dispar. Applied and Environmental Microbiology, 78, 4755-4757Pardo-López L, Soberón M, Bravo A. 2013. Bacillusthuringiensis insecticidal three-domain Cry toxins: Modeof action, insect resistance and consequences for cropprotection. FEMS Microbiology Reviews, 37, 3-22Rodrigo-Simón A, Caccia S, Ferré J. 2008. Bacillus thuringiensisCry1Ac toxin-binding and pore-forming activity in brushborder membrane vesicles prepared from anterior andposterior midgut regions of lepidopteran larvae. Applied andEnvironmental Microbiology, 74, 1710-1716Schaeffer P, Millet J, Aubert J P. 1956. Catabolic repression ofbacterial sporulation. Proceedings of the National Academyof Sciences of the United States of America, 54, 704-711Sharif F A, Alaeddino?lu N G. 1988. A rapid and simple methodfor staining of the crystal protein of Bacillus thuringiensis.Journal of Industrial Microbiology, 3, 227-229Shu C L, Liu D M, Zhou Z S, Cai J L, Peng Q, Gao J G, SongF P, Zhang J. 2013. An improved PCR-restriction fragmentlength polymorphism (RFLP) method for the identification ofcry1-type genes. Applied and Environmental Microbiology,79, 6706-6711Smirnoff W A. 1962. A staining method for differentiating spores,crystals, and cells of Bacillus thuringiensis (Berliner).Journal of Insect Pathology, 4, 384-386Tabashnik B E, Unnithan G C, Masson L, Crowder D W, Li X,Carrière Y. 2009. Asymmetrical cross-resistance betweenBacillus thuringiensis toxins Cry1Ac and Cry2Ab in pinkbollworm. Proceedings of the National Academy of Sciencesof the United States of America, 106, 11889-11894Tiewsiri K, Wang P. 2011. Differential alteration of twoaminopeptidases N associated with resistance to Bacillusthuringiensis toxin Cry1Ac in cabbage looper. Proceedingsof the National Academy of Sciences of the United Statesof America, 108, 14037-14042Upadhyay S K, Singh P K. 2011. Role of alkaline phosphatase ininsecticidal action of Cry1Ac against Helicoverpa armigeralarvae. Biotechnology Letters, 33, 2027-2036Xue J, Liang G M, Crickmore N, Li H T, He K L, Song F P, HuangD F, Zhang J. 2008. Cloning and characterization of a novelCry1A toxin from Bacillus thuringiensis with high toxicity tothe Asian corn borer and other lepidopteran insects. FEMSMicrobiology Letters, 280, 95-101 |