Agrawal N, Malhotra P, Bhatnagar R K. 2004. siRNA-directedsilencing of transgene expressed in cultured insect cells.Biochemical and Biophysical Research Communications,320, 428-434Banks D J, Jurat-Fuentes J L, Dean D H, Adang M J 2001.Bacillus thuringiensis Cry1Ac and Cry1Fa δ-endotoxinbinding to a novel 110KDa aminopeptidase in Heliothisvirescens is not N-acetylgalactosamine mediated. InsectBiochemistry and Molecular Biology, 31, 909-918Bradford M M. 1976. A rapid and sensitive method for thequantitation of microgram quantities of protein utilizing theprinciple of protein-dye binding. Analytical Biochemistry,72, 248-254Bravo A, Gómez I, Conde J, Muñoz-Garay C, SánchezJ, Miranda R, Zhuang M, Gill S S, Soberón M. 2004.Oligomerization triggers binding of a Bacillus thuringiensisCry1Ab pore-forming toxin to aminopeptidase N receptorleading to insertion into membrane microdomains.Biochimica et Biophysica Acta-Biomembranes, 1667,38-46Breton C, Šnajdrová L, Jeanneau C, Ko?a J, Imberty A. 2006.Structures and mechanisms of glycosyltransferases.Glycobiology, 16, 29-37Burton S L, Ellar D J, Li J, Derbyshire D J. 1999.N-acetylgalactosamine on the putative insect receptoraminopeptidase N is recognized by a site on the domain IIIlectin-like fold of a Bacillus thuringiensis insecticidal toxin.Journal of Molecular Biology, 287, 1011-1022Coates B S, Sumerford D V, Hellmicha R L, Lewis L C. 2007.A β-1,3-galactosyltransferase and brainiac/bre5 homologexpressed in the midgut did not contribute to a Cry1Abtoxin resistance trait in O. nubilalis. Insect Biochemistryand Molecular Biology, 37, 346-355Finney D J. 1971. Probit Analysis. 3rd ed. Cambridge UniversityPress, Cambridge, UK.Flores-Escobar B, Rodríguez-Magadan H, Bravo A, SoberónM, Gómez I. 2013. Differential role of Manduca sextaaminopeptidase-N and alkaline phosphatase have adifferential role in the mode of action of Cry1Aa, Cry1Aband Cry1Ac toxins from Bacillus thuringiensis. Applied and Environmental Microbiology, 79, 4543-4550Gahan L J, Gould F, Heckel D G. 2001. Identification of agene associated with Bt resistance in Heliothis virescens.Science, 293, 857-860Galili U, Mandrell R E, Hamadeh R M, Shohet S B, Griffiss J M.1988. Interaction between human natural anti-α-galactosylimmunoglobulin G and bacteria of the human flora. Infectionand Immunity, 56, 1730-1737Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D,Bairoch A. 2003. ExPASy, the proteomics server for in-depthprotein knowledge and analysis. Nucleic Acids Research,31,3784-3788Griffitts J S, Haslam S M, Yang T L, Garczynski S F, MulloyB, Morris H, Cremer P S, Dell A, Adang M J, Aroian R V.2005. Glycolipids as receptors for Bacillus thuringiensiscrystal toxin. Science, 307, 922-925Griffitts J S, Huffman D L, Whitacre J L, Barrows B D, MarroquinL D, Müller R, Brown J R, Hennet T, Esko J D, Aroian RV. 2003. Resistance to a bacterial toxin is mediated byremoval of a conserved glycosylation pathway requiredfor toxin-host interactions. Journal of Biological Chemistry,278, 45594-45602Griffitts S J, Whitacre L J, Stevens E D, Aroian R V. 2001.Bt toxin resistance from loss of a putative carbohydratemodifyingenzyme. Science, 293, 860-864Heckel D G, Gahan L J, Baxter S W, Zhao J-Z, Shelton A M,Gould F, Tabashnik B E. 2007. The diversity of Bt resistancegenes in species of Lepidoptera. Journal of InvertebratePathology, 95, 192-197Jurat-Fuentes J L, Adang M J. 2004. Characterization of aCry1Ac-receptor alkaline phosphatase in susceptible andresistant Heliothis virescens larvae. European Journal ofBiochemistry, 271,3127-3135Jurat-Fuentes J L, Adang M J. 2006. The Heliothis virescenscadherin protein expressed in Drosophila S2 cells functionsas a receptor for Bacillus thuringiensis Cry1A but not Cry1Fatoxins. Biochemistry, 45, 9688-9695Kumaraswami N S, Maruyama T, Kurabe S, Kishimoto T,Mitsui T, Hori H. 2001. Lipids of brush border membranevesicles (BBMV) from Plutella xylostella resistant andsusceptible to Cry1Ac δ-endotoxin of Bacillus thuringiensis.Comparative Biochemistry and Physiology (B-Biochemistryand Molecular Biology), 129, 173-183Liang G M, Tan W J, Guo Y Y. 2000. Studies on the resistancescreening and cross-resistance of cotton bollworm toBacillus thuringiensis (Berliner). Scientia Agricultura Sinica,33, 46-53 (in Chinese)Livak K J, Schmittgen T D. 2001. Analysis of relative geneexpression data using real-time quantitative PCR and the2-ΔΔCT method. Methods, 25, 402-408Lu Q, Zhang Y J, Cao G C, Zhang L L, Liang G M, Lu Y H, WuK M, Gao X W, Guo Y Y. 2012. A fragment of cadherin-likeprotein enhances Bacillus thuringiensis Cry1B and Cry1Ctoxicity to Spodoptera exigua (Lepidoptera: Noctuidae).Journal of Integrative Agriculture, 11, 628-638de Maagd R A, van der K, Bakker P L, Stiekema W J, Bosch,D. 1996. Different domains of Bacillus thuringiensisδ-endotoxins can bind to insect midgut membrane proteinson ligand blots. Applied and Environmental Microbiology,62, 2753-2757Morin S, Biggs R W, Sisterson M S, Shriver L, Ellers-Kirk C,Higginson D, Holley D, Gahan L J, Heckel D G, CarrièreY, Dennehy T J, Brown J K, Tabashnik B E. 2003. Threecadherin alleles associated with resistance to Bacillusthuringiensis in pink bollworm. Proceedings of the NationalAcademy of Sciences of the United States of America, 100,5004-5009Nielsen H, Engelbrecht J, Brunak S, von Heijine G. 1997.Identification of prokaryotic and eukaryotic signal peptidesand prediction of their cleavage sites. Protein Engineering,10, 1-6Ning C M, Wu K M, Liu C X, Gao Y L, Jurat-Fuentes J L, Gao XW. 2010. Characterization of a Cry1Ac toxin-binding alkalinephosphatase in the midgut from Helicoverpa armigera(Hübner) larvae. Journal of Insect Physiology, 56, 666-672Pardo-López L, Gómez I, Muñoz-Garay C, Jiménez-JuarezN, Soberón M, Bravo A. 2006. Structural and functionalanalysis of the pre-pore and membrane-inserted poreof Cry1Ab toxin. Journal of Invertebrate Pathology, 92,172-177Perera O P, Willis J D, Adang M J, Jurat-Fuentes J L. 2009.Cloning and characterization of the Cry1Ac-binding alkalinephosphatase (HvALP) from Heliothis virescens. InsectBiochemistry and Molecular Biology, 39, 294-302Pigott C R, Ellar D J. 2007. Role of receptors in Bacillusthuringiensis crystal toxin activity. Microbiology andMolecular Biology Reviews, 71, 255-281Rajagopal S, Sivakumar N, Agrawal P, Malhotra R K, BhatnagarR. 2002. Silencing of midgut amiopeptidase N of Spodopteralitura by double-stranded RNA establishes its role asBacillus thuringiensis toxin receptor. Journal of BiologicalChemistry, 277, 46849-46851Rodrigo-Simón A, Caccia S, Ferré J. 2008. Bacillus thuringiensisCry1Ac toxin-binding and pore-forming activity in brushborder membrane vesicles prepared from anterior andposterior midgut regions of Lepidopteran larvae. Appliedand Environmental Microbiology, 3, 1710-1716Sarkar A, Hess D, Mondal H A, Banerjee S, Sharma H C, DasS. 2009. Homodimeric alkaline phosphatase located atHelicoverpa armigera midgut, a putative receptor of Cry1Accontains α-GalNAc in terminal glycan structure as interactiveepitope. Journal of Proteome Research, 8, 1838-1848Schnepf E, Crickmore N, Van Rie J, Lereclus D, BaumJ, Feitelson J, Zeigler D R, Dean D H. 1998. Bacillusthuringiensis and its pesticidal crystal proteins. Microbiologyand Molecular Biology Reviews, 62, 775-806Sivakumar S, Rajagopal R, Venkatesh G R, Srivastava A,Bhatnagar R K. 2007. Knockdown of aminopeptidase-Nfrom Helicoverpa armigera larvae and in transfected Sf21cells by RNA interference reveals its functional interactionwith Bacillus thuringiensis insecticidal protein Cry1Ac.Journal of Biological Chemistry, 282, 7312-7319Soberón M, Pardo-López L, López I, Gómez I, Tabashnik B E,Bravo A. 2007. Engineering modified Bt toxins to counterinsect resistance. Science, 318, 1640-1642Tabashnik B E, Brévault T, Carrière Y. 2013. Insect resistanceto Bt crops, lessons from the first billion acres. NatureBiotechnology, 31, 510-521Tamura K, Peterson D, Peterson N, Stecher G, Nei M, KumarS. 2011. MEGA5, molecular evolutionary genetics analysisusing maximum likelihood, evolutionary distance, andmaximum parsimony methods. Molecular Biology andEvolution, 28, 2731-2739Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008.Suppression of cotton bollworm in multiple crops in Chinain areas with Bt toxin-containing cotton. Science, 321,1676-1678Xie R, Zhuang M, Ross L S, Gomez I, Oltean D I, Bravo A,Soberon M, Gill S S. 2005. Single amino acid mutationsin the cadherin receptor from Heliothis virescens affect itstoxin binding ability to Cry1A toxins. Journal of BiologicalChemistry, 280, 8416-8425Xu X J, Yu L Y, Wu Y D. 2005. Disruption of a cadherin geneassociated with resistance to Cry1Ac δ-endotoxin ofBacillus thuringiensis in Helicoverpa armigera. Applied andEnvironmental Microbiology, 71, 948-954Yang Y J, Chen H Y, Wu Y D, Yang Y H, Wu S W. 2007. Mutatedcadherin alleles from a field population of Helicoverpaarmigera confer resistance to Bacillus thuringiensis toxinCry1Ac. Applied and Environmental Microbiology, 73,6939-6944Zhang S P, Cheng H M, Gao Y L, Wang G R, Liang G M,Wu K M. 2009. Mutation of an aminopeptidase N geneis associated with Helicoverpa armigera resistance toBacillus thuringiensis Cry1Ac toxin. Insect Biochemistryand Molecular Biology, 39, 421-429Zhang X B, Candas M, Griko N B, Rose-Young L, Bulla Jr LA. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxindepends on specific binding of the toxin to the cadherinreceptor BT-R1 expressed in insect cells. Cell Death andDifferentiation, 12, 1407-1416Zhang X B, Candas M, Griko N B, Taussig R, Bulla Jr LA.2006. A mechanism of cell death involving an adenylylcyclase/PKA signaling pathway is induced by the Cry1Abtoxin of Bacillus thuringiensis. Proceedings of the NationalAcademy of Sciences of the United States of America,103, 9897-9902 |