[1] |
|
|
YAN Q, XUE D, HU Y Q, ZHOU Y Y, WEI Y W, YUAN X X, CHEN X. Identification of the root-specific soybean GmPR1-9 promoter and its application in Phytophora root-rot resistance. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896. doi: 10.3864/j.issn.0578-1752.2022.20.002. (in Chinese)
|
[2] |
YIN J L, WANG L Q, JIN T T, NIE Y, LIU H, QIU Y L, YANG Y H, LI B W, ZHANG J J, WANG D G, LI K, XU K, ZHI H J. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Molecular Plant, 2021, 14(11): 1881-1900.
doi: 10.1016/j.molp.2021.07.013
pmid: 34303025
|
[3] |
赵玎玲, 王梦璇, 孙天杰, 苏伟华, 赵志华, 肖付明, 赵青松, 闫龙, 张洁, 王冬梅. 大豆单锌指蛋白基因 GmSZFP的克隆及其在SMV与寄主互作中的功能. 中国农业科学, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001.
|
|
ZHAO D L, WANG M X, SUN T J, SU W H, ZHAO Z H, XIAO F M, ZHAO Q S, YAN L, ZHANG J, WANG D M. Cloning of the soybean single zinc finger protein gene GmSZFP and its functional analysis in SMV-host interactions. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001. (in Chinese)
|
[4] |
MALAPI-NELSON M, WEN R H, OWNLEY B H, HAJIMORAD M R. Co-infection of soybean with soybean mosaic virus and alfalfa mosaic virus results in disease synergism and alteration in accumulation level of both viruses. Plant Disease, 2009, 93(12): 1259-1264.
|
[5] |
JIN T T, KARTHIKEYAN A, WANG L Q, ZONG T X, WANG T, YIN J L, HU T, YANG Y H, LIU H, CUI Y C, ZHAO T J, ZHI H J. Digs out and characterization of the resistance gene accountable to soybean mosaic virus in soybean (Glycine max (L.) Merrill). Theoretical and Applied Genetics, 2022, 135(12): 4217-4232.
|
[6] |
JIN T T, YIN J L, WANG T, XUE S, LI B W, ZONG T X, YANG Y H, LIU H, LIU M Z, XU K, WANG L Q, XING G N, ZHI H J, LI K. RSC3K of soybean cv. Kefeng No. 1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. Journal of Integrative Plant Biology, 2023, 65(3): 838-853.
|
[7] |
LI K, YANG Q H, ZHI H J, GAI J Y. Identification and distribution of soybean mosaic virus strains in southern China. Plant Disease, 2010, 94(3): 351-357.
doi: 10.1094/PDIS-94-3-0351
pmid: 30754253
|
[8] |
CHE Z J, ZHANG S Y, PU Y X, YANG Y M, LIU H L, YANG H, WANG L, ZHANG Y H, LIU B H, ZHANG H Y, WANG H, CHENG H, YU D Y. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. Journal of Experimental Botany, 2023, 74(8): 2692-2706.
|
[9] |
WIDYASARI K, TRAN P T, SHIN J, SON H, KIM K H. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to soybean mosaic virus in a susceptible soybean cultivar. Journal of Experimental Botany, 2022, 73(5): 1623-1642.
|
[10] |
COLLINS G A, GOLDBERG A L. The logic of the 26S proteasome. Cell, 2017, 169(5): 792-806.
doi: S0092-8674(17)30474-9
pmid: 28525752
|
[11] |
MENG X B, ZHAO W S, LIN R M, WANG M, PENG Y L. Molecular cloning and characterization of a rice blast-inducible RING-H2 type zinc finger gene. DNA Sequence, 2006, 17(1): 41-48.
|
[12] |
金晓琴, 康振, 刘伟娜, 潘永娟, 王梨嬛, 郭卫东, 杨莉. 蜜柚泛素蛋白连接酶RING-H2finger基因的克隆与表达分析. 园艺学报, 2014, 41(8): 1689-1698.
|
|
JIN X Q, KANG Z, LIU W N, PAN Y J, WANG L H, GUO W D, YANG L. Isolation and expression analysis of two ubiquitin-protein ligase RING-H2 finger genes from pommelos [Citrus grandis (L.) osbeck. Acta Horticulturae Sinica, 2014, 41(8): 1689-1698. (in Chinese)
|
[13] |
李彦泽. 拟南芥F-box基因AtPP2-B11的功能分析及苹果RING finger型泛素连接酶E3的家族分析[D]. 泰安: 山东农业大学, 2011.
|
|
LI Y Z. Functional characterization of F-box-containing gene AtPP2-B11 and genome-wide anaysis of the RING finger proteins in apple[D]. Taian: Shandong Agricultural University, 2011. (in Chinese)
|
[14] |
HONG J K, CHOI H W, HWANG I S, HWANG B K. Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance. Plant Molecular Biology, 2007, 63(4): 571-588.
pmid: 17149652
|
[15] |
吴学闯, 曹新有, 陈明, 张晓科, 刘阳娜, 徐兆师, 李连城, 马有志. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析. 植物遗传资源学报, 2010, 11(3): 343-348, 359.
doi: 10.13430/j.cnki.jpgr.2010.03.016
|
|
WU X C, CAO X Y, CHEN M, ZHANG X K, LIU Y N, XU Z S, LI L C, MA Y Z. Isolation and expression pattern assay of C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycine max (L.). Journal of Plant Genetic Resources, 2010, 11(3): 343-348, 359. (in Chinese)
|
[16] |
LIU H Z, ZHANG H J, YANG Y Y, LI G J, YANG Y X, WANG X E, LI D Y, SONG F M. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Molecular Biology, 2008, 68(1/2): 17-30.
|
[17] |
NI X M, TIAN Z D, LIU J, SONG B T, XIE C H. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans. Journal of Plant Physiology, 2010, 167(6): 488-496.
|
[18] |
LAITY J H, LEE B M, WRIGHT P E. Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 2001, 11(1): 39-46.
doi: 10.1016/s0959-440x(00)00167-6
pmid: 11179890
|
[19] |
BERROCAL-LOBO M, STONE S, YANG X, ANTICO J, CALLIS J, RAMONELL K M, SOMERVILLE S. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS ONE, 2010, 5(12): e14426.
|
[20] |
HONDO D, SHU H S, KANAYAMA Y, YOSHIKAWA N, TAKENAKA S, TAKAHASHI H. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Molecular Plant-Microbe Interactions, 2007, 20(1): 72-81.
doi: 10.1094/MPMI-20-0072
pmid: 17249424
|
[21] |
SERRANO M, GUZMÁN P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics, 2004, 167(2): 919-929.
|
[22] |
ZHOU L X, TIAN Y P, REN L L, YAN Z Y, JIANG J, SHI Q H, GENG C, LI X D. A natural substitution of a conserved amino acid in eIF4E confers resistance against multiple potyviruses. Molecular Plant Pathology, 2024, 25(1): e13418.
|
[23] |
LI G L, QIAN W, ZHANG S J, ZHANG S F, LI F, ZHANG H, FANG Z Y, WU J, WANG X W, SUN R F. Variability in eukaryotic initiation factor iso4E in Brassica rapa influences interactions with the viral protein linked to the genome of Turnip mosaic virus. Scientific Reports, 2018, 8(1): 13588.
|
[24] |
AGAOUA A, RITTENER V, TROADEC C, DESBIEZ C, BENDAHMANE A, MOQUET F, DOGIMONT C. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. Journal of Experimental Botany, 2022, 73(12): 4008-4021.
doi: 10.1093/jxb/erac135
pmid: 35394500
|
[25] |
SHOPAN J, MOU H P, ZHANG L L, ZHANG C T, MA W W, WALSH J A, HU Z Y, YANG J H, ZHANG M F. Eukaryotic translation initiation factor 2B-beta (eIF2B-β), a new class of plant virus resistance gene. The Plant Journal, 2017, 90(5): 929-940.
|
[26] |
黄仁良. OsCERK1的自然变异调控水稻与丛枝菌根真菌共生[D]. 武汉: 华中农业大学, 2019.
|
|
HUANG R L. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
|
[27] |
车志军. 大豆对大豆花叶病毒SC7抗性的关联分析及候选基因Rsc7-1的功能研究[D]. 南京: 南京农业大学, 2021.
|
|
CHE Z J. Genome-wide association study reavels novel loci for soybean mosaic virus SC7 resistance and functional study of Rsc7-1[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
|
[28] |
DONG H, FEI G L, WU C Y, WU F Q, SUN Y Y, CHEN M J, REN Y L, ZHOU K N, CHENG Z J, WANG J L, JIANG L, ZHANG X, GUO X P, LEI C L, SU N, WANG H Y, WAN J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013, 162(4): 1867-1880.
doi: 10.1104/pp.113.217604
pmid: 23803583
|
[29] |
LIU X, XU Z Y, YANG Y R, CAO P H, CHENG H, ZHOU H Y. Plastid caseinolytic protease OsClpR1 regulates chloroplast development and chloroplast RNA editing in rice. Rice, 2021, 14(1): 45.
doi: 10.1186/s12284-021-00489-6
pmid: 34018050
|
[30] |
YANG Q, ISLAM M A, CAI K Y, TIAN S X, LIU Y, KANG Z S, GUO J. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. BMC Plant Biology, 2020, 20(1): 555.
|
[31] |
LUO X Y, ZHANG M X, XU P, LIU G F, WEI S. The intron retention variant CsClpP3m is involved in leaf chlorosis in some tea cultivars. Frontiers in Plant Science, 2022, 12: 804428.
|
[32] |
SHEN G X, YAN J Q, PASAPULA V, LUO J H, HE C X, CLARKE A K, ZHANG H. The chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role in chloroplast function. The Plant Journal, 2007, 49(2): 228-237.
|
[33] |
WEI J, QIU X Y, CHEN L, HU W J, HU R B, CHEN J, SUN L, LI L, ZHANG H, LV Z Q, SHEN G X. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. Journal of Experimental Botany, 2015, 66(19): 5809-5820.
doi: 10.1093/jxb/erv286
pmid: 26085677
|