[1] |
朱波, 王延晖, 牛红, 陈燕, 张路培, 高会江, 高雪, 李俊雅, 孙少华. 畜禽基因组选择中贝叶斯方法及其参数优化策略. 中国农业科学, 2014, 47(22): 4495-4505. doi: 10.3864/j.issn.0578-1752.2014.22.015.
doi: 10.3864/j.issn.0578-1752.2014.22.015
|
|
ZHU B, WANG Y H, NIU H, CHEN Y, ZHANG L P, GAO H J, GAO X, LI J Y, SUN S H. The strategy of parameter optimization of Bayesian methods for genomic selection in livestock. Scientia Agricultura Sinica, 2014, 47(22): 4495-4505. doi: 10.3864/j.issn.0578-1752.2014.22.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.22.015
|
[2] |
VANRADEN P M, VAN TASSELL C P, WIGGANS G R, SONSTEGARD T S, SCHNABEL R D, TAYLOR J F, SCHENKEL F S. Invited Review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 2009, 92(1): 16-24.
doi: 10.3168/jds.2008-1514
pmid: 19109259
|
[3] |
DE ROOS A P W, HAYES B J, SPELMAN R J, GODDARD M E. Linkage disequilibrium and persistence of phase in Holstein-Friesian, jersey and Angus cattle. Genetics, 2008, 179(3): 1503-1512.
doi: 10.1534/genetics.107.084301
pmid: 18622038
|
[4] |
HAYES B J, BOWMAN P J, CHAMBERLAIN A C, VERBYLA K, GODDARD M E. Accuracy of genomic breeding values in multi- breed dairy cattle populations. Genetics, Selection, Evolution, 2009, 41: 51.
doi: 10.1186/1297-9686-41-51
|
[5] |
MATUKUMALLI L K, SCHROEDER S, DENISE S, SONSTEGARD T, LAWLEY C T, GEORGES M. Analyzing LD blocks and CNV segments in cattle: Novel genomic features identified using the BovineHD BeadChip. 2011. www.scienceopen.com/document?vid=0fb91f10-7679-4ec4-b5a9-ca39bd541f2e.
|
[6] |
CARVALHEIRO R, BOISON S A, NEVES H H R, SARGOLZAEI M, SCHENKEL F S, UTSUNOMIYA Y T, O'BRIEN A M P, SÖLKNER J, MCEWAN J C, VAN TASSELL C P, SONSTEGARD T S, GARCIA J F. Accuracy of genotype imputation in nelore cattle. Genetics, Selection, Evolution, 2014, 46: 69.
doi: 10.1186/s12711-014-0069-1
|
[7] |
VANRADEN P M, NULL D J, SARGOLZAEI M, WIGGANS G R, TOOKER M E, COLE J B, SONSTEGARD T S, CONNOR E E, WINTERS M, VAN KAAM J B C H M, VALENTINI A, VAN DOORMAAL B J, FAUST M A, DOAK G A. Genomic imputation and evaluation using high-density Holstein genotypes. Journal of Dairy Science, 2013, 96(1): 668-678.
doi: 10.3168/jds.2012-5702
pmid: 23063157
|
[8] |
LI N, STEPHENS M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics, 2003, 165(4): 2213-2233.
doi: 10.1093/genetics/165.4.2213
pmid: 14704198
|
[9] |
DRUET T, SCHROOTEN C, DE ROOS A P W. Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. Journal of Dairy Science, 2010, 93(11): 5443-5454.
doi: 10.3168/jds.2010-3255
pmid: 20965360
|
[10] |
GROSSI D A, BRITO L F, JAFARIKIA M, SCHENKEL F S, FENG Z. Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs. Animal, 2018, 12(11): 2235-2245.
doi: 10.1017/S175173111800085X
pmid: 29706144
|
[11] |
CORBIN L J, KRANIS A, BLOTT S C, SWINBURNE J E, VAUDIN M, BISHOP S C, WOOLLIAMS J A. The utility of low-density genotyping for imputation in the Thoroughbred horse. Genetics, Selection, Evolution: GSE, 2014, 46(1): 9.
|
[12] |
YE S P, YUAN X L, LIN X R, GAO N, LUO Y Y, CHEN Z M, LI J Q, ZHANG X Q, ZHANG Z. Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population. Journal of Animal Science and Biotechnology, 2018, 9: 30.
doi: 10.1186/s40104-018-0241-5
pmid: 29581880
|
[13] |
CHANG C C, CHOW C C, TELLIER L C, VATTIKUTI S, PURCELL S M, LEE J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4(1): s13742-15.
|
[14] |
BOICHARD D, CHUNG H, DASSONNEVILLE R, DAVID X, EGGEN A, FRITZ S, GIETZEN K J, HAYES B J, LAWLEY C T, SONSTEGARD T S, VAN TASSELL C P, VANRADEN P M, VIAUD-MARTINEZ K A, WIGGANS G R, CONSORTIUM B L. Design of a bovine low-density SNP array optimized for imputation. PLoS One, 2012, 7(3): e34130.
doi: 10.1371/journal.pone.0034130
|
[15] |
BOLORMAA S, GORE K, VAN DER WERF J H J, HAYES B J, DAETWYLER H D. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Animal Genetics, 2015, 46(5): 544-556.
doi: 10.1111/age.12340
pmid: 26360638
|
[16] |
BROWNING B L, ZHOU Y, BROWNING S R. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 2018, 103(3): 338-348.
doi: 10.1016/j.ajhg.2018.07.015
|
[17] |
MARCHINI J, HOWIE B. Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 2010, 11(7): 499-511.
doi: 10.1038/nrg2796
pmid: 20517342
|
[18] |
VENTURA R V, MILLER S P, DODDS K G, AUVRAY B, LEE M, BIXLEY M, CLARKE S M, MCEWAN J C. Assessing accuracy of imputation using different SNP panel densities in a multi-breed sheep population. Genetics, Selection, Evolution: GSE, 2016, 48(1): 71.
|
[19] |
O’BRIEN A C, JUDGE M M, FAIR S, BERRY D P. High imputation accuracy from informative low-to-medium density single nucleotide polymorphism genotypes is achievable in sheep1. Journal of Animal Science, 2019, 97(4): 1550-1567.
doi: 10.1093/jas/skz043
pmid: 30722011
|
[20] |
BROWNING S R, BROWNING B L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics, 2007, 81(5): 1084-1097.
doi: 10.1086/521987
|
[21] |
CALUS M P L, BOUWMAN A C, HICKEY J M, VEERKAMP R F, MULDER H A. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications. Animal, 2014, 8(11): 1743-1753.
doi: 10.1017/S1751731114001803
pmid: 25045914
|
[22] |
WENG Z, ZHANG Z, ZHANG Q, FU W, HE S, DING X. Comparison of different imputation methods from low- to high-density panels using Chinese Holstein cattle. Animal, 2013, 7(5): 729-735.
doi: 10.1017/S1751731112002224
pmid: 23228675
|
[23] |
WANG C, HABIER D, PEIRIS B L, WOLC A, KRANIS A, WATSON K A, AVENDANO S, GARRICK D J, FERNANDO R L, LAMONT S J, DEKKERS J C M. Accuracy of genomic prediction using an evenly spaced, low-density single nucleotide polymorphism panel in broiler chickens. Poultry Science, 2013, 92(7): 1712-1723.
doi: 10.3382/ps.2012-02941
pmid: 23776257
|
[24] |
WELLMANN R, PREUß S, THOLEN E, HEINKEL J, WIMMERS K, BENNEWITZ J. Genomic selection using low density marker panels with application to a sire line in pigs. Genetics, Selection, Evolution: GSE, 2013, 45(1): 28.
|
[25] |
HERRY F, HÉRAULT F, PICARD DRUET D, VARENNE A, BURLOT T, LE ROY P, ALLAIS S. Design of low density SNP chips for genotype imputation in layer chicken. BMC Genetics, 2018, 19(1): 108.
doi: 10.1186/s12863-018-0695-7
pmid: 30514201
|
[26] |
YUAN M, FANG H Y, ZHANG H. Correcting for differential genotyping error in genetic association analysis. Journal of Human Genetics, 2013, 58(10): 657-666.
doi: 10.1038/jhg.2013.74
pmid: 23863749
|
[27] |
HOZÉ C, FOUILLOUX M N, VENOT E, GUILLAUME F, DASSONNEVILLE R, FRITZ S, DUCROCQ V, PHOCAS F, BOICHARD D, CROISEAU P. High-density marker imputation accuracy in sixteen French cattle breeds. Genetics, Selection, Evolution, 2013, 45: 33.
doi: 10.1186/1297-9686-45-33
|
[28] |
罗汉鹏, 窦金焕, 安涛, 陈少侃, 王雅春. 基于荷斯坦牛群体基因组数据填充软件的准确性比较(Minimac 3与Beagle 5.1). 中国畜牧兽医, 2021, 48(5): 1664-1671.
|
|
LUO H P, DOU J H, AN T, CHEN S K, WANG Y C. Comparison of software (minimac 3 and beagle 5.1) for genomic imputation using Holstein cow population. China Animal Husbandry & Veterinary Medicine, 2021, 48(5): 1664-1671. (in Chinese)
|
[29] |
BOLORMAA S, CHAMBERLAIN A J, KHANSEFID M, STOTHARD P, SWAN A A, MASON B, PROWSE-WILKINS C P, DUIJVESTEIJN N, MOGHADDAR N, VAN DER WERF J H, DAETWYLER H D, MACLEOD I M. Accuracy of imputation to whole-genome sequence in sheep. Genetics, Selection, Evolution, 2019, 51(1): 1.
doi: 10.1186/s12711-018-0443-5
|
[30] |
HAYES B J, BOWMAN P J, DAETWYLER H D, KIJAS J W, VAN DER WERF J H J. Accuracy of genotype imputation in sheep breeds. Animal Genetics, 2012, 43(1): 72-80.
doi: 10.1111/j.1365-2052.2011.02208.x
pmid: 22221027
|
[31] |
VENTURA R V, LU D, SCHENKEL F S, WANG Z, LI C, MILLER S P. Impact of reference population on accuracy of imputation from 6K to 50K single nucleotide polymorphism chips in purebred and crossbreed beef cattle1. Journal of Animal Science, 2014, 92(4): 1433-1444.
doi: 10.2527/jas.2013-6638
pmid: 24663187
|
[32] |
HEIDARITABAR M, CALUS M P L, VEREIJKEN A, GROENEN M A M, BASTIAANSEN J W M. Accuracy of imputation using the most common sires as reference population in layer chickens. BMC Genetics, 2015, 16: 101.
doi: 10.1186/s12863-015-0253-5
pmid: 26282557
|
[33] |
UEMOTO Y, SASAKI S, SUGIMOTO Y, WATANABE T. Accuracy of high-density genotype imputation in Japanese Black cattle. Animal Genetics, 2015, 46(4): 388-394.
doi: 10.1111/age.12314
pmid: 26156250
|