中国农业科学 ›› 2022, Vol. 55 ›› Issue (3): 529-542.doi: 10.3864/j.issn.0578-1752.2022.03.009
收稿日期:
2021-01-06
接受日期:
2021-03-10
出版日期:
2022-02-01
发布日期:
2022-02-11
通讯作者:
郎明
作者简介:
邹温馨,E-mail: 基金资助:
ZOU WenXin1(),SU WeiHua1,CHEN YuanXue2,CHEN XinPing1,LANG Ming1,*(
)
Received:
2021-01-06
Accepted:
2021-03-10
Online:
2022-02-01
Published:
2022-02-11
Contact:
Ming LANG
摘要: 目的研究长期施氮对酸性紫色土壤中氨氧化古菌(AOA)和氨氧化细菌(AOB)群落特征的影响,揭示氨氧化微生物群落的驱动因子及其调控硝化作用的微生物学机制。方法依托四川雅安玉米体系施氮长期定位试验(始于2010年),试验处理包括5个供氮水平,即0(N0)、90(N90)、180(N180)、270(N270)和360(N360)kg N·hm-2,通过Illumina Miseq高通量测序技术测定AOA和AOB的群落,探究长期施氮对氨氧化微生物群落介导的硝化作用的影响。结果 长期施氮影响AOA和AOB的α-多样性(包括丰富度指数和香农-威纳指数)、群落结构和群落组成。其中,随着施氮量的增加,AOA 丰富度指数无显著变化,香农-威纳指数显著降低,AOB 丰富度指数和香农-威纳指数均显著增加;长期不同供氮水平显著影响AOA和AOB的群落结构,供氮水平的增加显著降低AOB优势类群中 Nitrosospira Cluster 3a.1的相对丰度(P<0.05),同时显著增加了Cluster 3a.2、Cluster 9和Cluster 1的相对丰度(P<0.05),而对AOA优势类群无显著影响。土壤pH、全氮(TN)、有机质(SOM)、NH4+-N和NO3--N均显著影响AOA和AOB的α-多样性,其中,pH与AOB 丰富度指数和香农-威纳指数呈显著负相关(P<0.01),而与AOA 香农-威纳指数呈显著正相关,而TN、SOM、NH4+-N和NO3--N与AOB 丰富度指数和香农-威纳指数呈显著正相关,与AOA 香农-威纳指数呈显著负相关。同时,pH、TN、NO3--N 、SOM 和NH4+-N显著影响AOA和AOB的群落结构(P<0.05)。结构方程模型(SEM)的结果表明,长期施氮通过降低土壤pH、提高TN和NO3--N含量、改变AOA和AOB的α-多样性和群落结构,进而提高了土壤的硝化势。结论 长期施氮通过改变酸性紫色土壤pH、TN、NH4+-N和NO3--N和氨氧化微生物的α-多样性和群落结构进而影响了硝化势。
邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542.
ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil[J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
表1
不同施氮处理基本理化性质"
处理 Treatment | 全氮 TN (g·kg-1) | 有机质 SOM (g·kg-1) | pH | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|
N0 | 1.56±0.11c | 26.7±1.79c | 6.6±0.10a | 4.26±0.60d | 8.20±0.65c |
N90 | 1.95±0.18b | 31.6±3.04ab | 6.4±0.08b | 5.91±0.43c | 12.07±0.70b |
N180 | 2.10±0.14a | 28.7±1.93bc | 5.9±0.10c | 6.50±0.46c | 12.79±0.65b |
N270 | 2.18±0.16a | 34.1±3.00a | 5.8±0.10c | 8.00±0.63b | 15.77±0.77a |
N360 | 2.21±0.20a | 33.0±2.21a | 5.9±0.05c | 10.56±0.75a | 16.16±0.80a |
数值为平均值±标准差,n=3。数据后的不同小写字母表示施氮处理间差异显著(P<0.05)。N0、N90、N180、N270和N360 分别表示施氮量为 0、90、180、270和360 kg N·hm-2。下同 The value is the mean±standard deviation, n=3. Difference lowercase letters indicate the significant difference of different nitrogen application treatments (P<0.05). N0, N90, N180, N270, N360 indicate N application rate are 0, 90, 180, 270, 360 kg N·hm-2, respectively. The same as below |
表2
AOA、AOB的α-多样性和硝化势与土壤性质的Pearson相关性分析"
AOA Sobs index | AOB Sobs index | AOA Shannon-Wiener index | AOB Shannon-Wiener index | 硝化势 PNR | |
---|---|---|---|---|---|
pH | 0.270 | -0.743** | 0.862** | -0.948** | -0.312 |
TN | -0.410 | 0.633* | -0.821** | 0.857** | 0.366 |
SOM | -0.490 | 0.603* | -0.688** | 0.557* | 0.278 |
NH4+-N | -0.110 | 0.628* | -0.629* | 0.701** | 0.386 |
NO3--N | -0.150 | 0.710** | -0.803** | 0.817** | 0.542* |
[1] |
BEECKMAN T, BEECKMAN F, MOTTE H.Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology, 2018, 50: 166-173.
doi: 10.1016/j.copbio.2018.01.014 |
[2] |
MARTENS-HABBENA W, BERUBE P M, URAKAWA H, TORRE J R D L, STAHL D A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 2009, 461(7266): 976-979.
doi: 10.1038/nature08465 |
[3] |
HAN J P, SHI J C, ZENG L Z, XU J M, WU L S.Impacts of continuous excessive fertilization on soil potential nitrification activity and nitrifying microbial community dynamics in greenhouse system. Journal of Soils and Sediments, 2017, 17: 471-480. doi: 10.1007/ s11368-016-1525-z.
doi: 10.1007/ s11368-016-1525-z |
[4] |
JIA Z J, HU X J, XIA W W, FORNARA D, NANNIPIERI P, TIEDJE J.Community shift of microbial ammonia oxidizers in air-dried rice soils after 22 years of nitrogen fertilization. Biology and Fertility of Soils, 2019, 55: 419-424.
doi: 10.1007/s00374-019-01352-z |
[5] |
YAO H Y, GAO Y M, NICOL G W, CAMPBELL C D, PROSSER J I, ZHANG L M, HAN W Y, SINGH B K.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625.
doi: 10.1128/AEM.00136-11 |
[6] |
WANG B Z, ZHAO J, GUO Z Y, MA J, XU H, JIA Z J.Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. The Isme Journal, 2015, 9(5): 1062-1075.
doi: 10.1038/ismej.2014.194 |
[7] |
PROSSER J I, NICOL G W.Archaeal and bacterial ammonia- oxidizers in soil: The quest for niche specialization and differentiation. Trends in Microbiology, 2012, 20(11): 523-531.
doi: 10.1016/j.tim.2012.08.001 |
[8] |
HU H W, ZHANG L M, DAI Y, DI H J, HE J Z. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments. 2013(8), 13: 1439-1449.
doi: 10.1007/s11368-013-0726-y |
[9] |
DI H J, CAMERON K C, SHEN J P, WINEFIELD C S, O’ CALLAGHAN M, BOWATTE S, HE J Z.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2(9): 621-624.
doi: 10.1038/ngeo613 |
[10] |
OUYANG Y, NORTON J M, STARK J M, REEVE J R, HABTESELASSIE M Y.Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15.
doi: 10.1016/j.soilbio.2016.01.012 |
[11] |
ZENG J, LIU X J, SONG L, LIN X G, ZHANG H Y, SHEN C C, CHU H Y.Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 2016, 92: 41-49.
doi: 10.1016/j.soilbio.2015.09.018 |
[12] |
WANG F H, CHEN S M, WANG Y Y, ZHANG Y M, HU C S, LIU B B.Long-term nitrogen fertilization elevates the activity and abundance of nitrifying and denitrifying microbial communities in an upland soil: implications for nitrogen loss from intensive agricultural systems. Frontiers in Microbiology, 2018, 9: 2424.
doi: 10.3389/fmicb.2018.02424 |
[13] |
GUO J J, LING N, CHEN H, ZHU C, KONG Y L, WANG M, SHEN Q R, GUO S W.Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment. Soil Biology and Biochemistry, 2017, 115: 403-414.
doi: 10.1016/j.soilbio.2017.09.007 |
[14] | 武传东, 闫倩, 辛亮, 王保莉, 曲东. 长期施用氮肥和磷肥对渭北旱塬土壤中氨氧化古菌多样性的影响. 农业环境科学学报, 2012, 31(4): 743-749. |
WU C D, YAN Q, XIN L, WANG B L, QU D.Effects of long-term nitrogen and phosphate fertilization on diversity of ammonia- oxidizing archaea in dry highland soil of Loess Plateau, China. Journal of Agro-Environment Science, 2012, 31(4): 743-749. (in Chinese) | |
[15] | 程林, 刘桂婷, 王保莉, 曲东. 渭北旱塬长期施肥试验中氨氧化细菌的多样性及群落结构分析. 农业环境科学学报, 2010, 29(7): 1333-1340. |
CHENG L, LIU G T, WANG B L, QU D.Effects of long-term fertilization on diversity and composition of ammonia-oxidizing bacterium communities in Weibei dry-land.Journal of Agro-Environment Science, 2010, 29(7): 1333-1340. (in Chinese) | |
[16] |
WU Y C, LU L, WANG B Z, LIN X G, ZHU J G, CAI Z C, YAN X Y, JIA Z J.Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. Soil Science Society of America Journal, 2011, 75(4): 1431-1439.
doi: 10.2136/sssaj2010.0434 |
[17] |
TAO R, WAKELIN S A, LIANG Y C, CHU G X.Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biology and Biochemistry, 2017, 114: 20-30.
doi: 10.1016/j.soilbio.2017.06.027 |
[18] |
SONG H, CHE Z, CAO W C, HUANG T, WANG J G, DONG Z R.Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen. Environmental Science and Pollution Research, 2016, 23(12): 11964-11974.
doi: 10.1007/s11356-016-6396-8 |
[19] |
CHEN Y L, XU Z W, HU H W, HU Y J, HAO Z P, JIANG Y, CHEN B D.Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68(3): 36-45.
doi: 10.1016/j.apsoil.2013.03.006 |
[20] |
WANG X L, HAN C, ZHANG J B, HUANG Q R, DENG H, DENG Y C, ZHONG W H.Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biology and Biochemistry, 2015, 84: 28-37.
doi: 10.1016/j.soilbio.2015.02.013 |
[21] | 徐白璐, 钟文辉, 黄欠如, 秦红益, 邓欢, 韩成. 长期施肥酸性旱地土壤硝化活性及自养硝化微生物特征. 环境科学, 2017, 38(8): 3473-3482. |
XU B L, ZHONG W H, HUANG Q R, QIN H Y, DENG H, HAN C.Nitrification activity and autotrophic nitrifiers in long-term fertilized acidic upland soils. Environment Science, 2017, 38(8): 3473-3482. (in Chinese) | |
[22] |
ZHONG W H, BIAN B Y, GAO N, MIN J, SHI W M, LIN X G, SHEN W S.Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil. Soil Biology and Biochemistry, 2016, 93: 150-159.
doi: 10.1016/j.soilbio.2015.11.003 |
[23] |
AI C, LIANG G Q, SUN J W, WANG X B, HE P, ZHOU W.Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biology and Biochemistry, 2013, 57: 30-42.
doi: 10.1016/j.soilbio.2012.08.003 |
[24] |
KONG Y L, LING N, XUE C, CHEN H, RUAN Y, GUO J J, ZHU C, WANG M, SHEN Q R, GUO S H.Long‐term fertilization regimes change soil nitrification potential by impacting active autotrophic ammonia oxidizers and nitrite oxidizers as assessed by DNA stable isotope probing. Environmental Microbiology, 2019, 21(4): 1224-1240.
doi: 10.1111/emi.2019.21.issue-4 |
[25] | 何毓蓉. 中国紫色土(上篇). 北京: 科学出版社, 1991. |
HE Y R.Chinese purple soil (Part 1). Beijing: Science Press, 1991. (in Chinese) | |
[26] | 卢圣鄂, 王蓥燕, 陈勇, 涂仕华, 张小平, 辜运富. 不同施肥制度对石灰性紫色水稻土中氨氧化古菌群落结构的影响. 生态学报, 2016, 36(21): 6919-6927. |
LU S E, WANG Y Y, CHEN Y, TU S H, ZHANG X P, GU Y F. Impact of different long-term fertilization systems on ammonia oxidation Archaea community structures in Calcareous Purple Paddy soil. Acta Ecologica Sinica, 2016, 36(21): 6919-6927. (in Chinese) | |
[27] |
LI Q Q, LUO Y L, WANG C Q, LI B, ZHANG X, YUAN D G, GAO X S, ZHANG H.Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment, 2016, 547: 173-181.
doi: 10.1016/j.scitotenv.2015.12.094 |
[28] |
YANG X L, ZHU B, LI Y L.Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China. Journal of Mountain Science, 2013, 10(3): 410-417.
doi: 10.1007/s11629-013-2712-7 |
[29] |
ZHU B, WANG T, KUANG F H, LUO Z X, TANG J L, XU T P.Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Science Society of America Journal, 2009, 73(4): 1419-1426.
doi: 10.2136/sssaj2008.0259 |
[30] | 李青军, 张炎, 胡伟, 孟凤轩, 冯广平, 胡国智, 刘新兰. 氮素运筹对玉米干物质积累、氮素吸收分配及产量的影响. 植物营养与肥料学报, 2011, 17(3): 755-760. |
LI Q J, ZHANG Y, HU W, MENG F X, FENG G P, HU G Z, LIU X L. Effects of nitrogen management on maize dry matter accumulation nitrogen uptake and distribution and maize yield. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 755-760. (in Chinese) | |
[31] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K.Analytical Methods of Soil Agricultural Chemistry. Beijing: Chinese Agricultural Science and Technology Press, 2000. (in Chinese) | |
[32] |
KUROLA J, SALKINOJA-SALONEN M, AARNIO T, HULTMAN J, ROMANTSCHUK M.Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. Fems Microbiology Letters, 2005, 250: 33-38.
doi: 10.1016/j.femsle.2005.06.057 |
[33] | FRANCIS C A, ROBERTS K J, BEMAN J M, SANTORO A E, OAKLEY B B.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 14683-14688. |
[34] |
ROTTHAUWE J H, WITZEL K P, LIESACK W.The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712.
doi: 10.1128/aem.63.12.4704-4712.1997 |
[35] |
TANG Y Q, ZHANG X Y, LI D D, WANG H M, CHEN F S, FU X L, FANG X M, SUN X M, YU G R.Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 2016, 103: 284-293.
doi: 10.1016/j.soilbio.2016.09.001 |
[36] |
LIU H Y, LI J, ZHAO Y, XIE K X, TANG X J, WANG S X, LI Z P, LIAO Y L, XU J M, DI H J, LI Y.Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to long-term manure application in four paddy soils of south of China. Science of the Total Environment, 2018, 633: 641-648.
doi: 10.1016/j.scitotenv.2018.03.108 |
[37] | GRACE J B.Structural Equation Modeling and Natural Systems. Cambridge: Cambridge University Press, 2006. |
[38] | HOOPER D, COUGHLAN J, MULLEN M R.Structural equation modeling: Guidelines for determining model fit. Electronic Journal on Business Research Methods, 2008, 6(1): 53-60. |
[39] |
ZHANG L M, HU H W, SHEN J P, HE J Z.Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The Isme Journal, 2012, 6: 1032-1045.
doi: 10.1038/ismej.2011.168 |
[40] |
LIU S, COYNE M S, GROVE J H, FLYTHE M D.Tillage, not fertilization, dominantly influences ammonia-oxidizing archaea diversity in long-term, continuous maize. Applied Soil Ecology, 2020, 147: 103384.
doi: 10.1016/j.apsoil.2019.103384 |
[41] |
WANG S Y, WANG Y, FENG X J, ZHAI L M, ZHU G B.Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Applied Microbiology and Biotechnology, 2011, 90(2): 779-787.
doi: 10.1007/s00253-011-3090-0 |
[42] |
HE L L, BI Y C, ZHAO J, PITTELKOW C M, ZHAO X, WANG S Q, XING G X. Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils. Science of the Total Environment, 2018, 619-620: 1105-1115.
doi: 10.1016/j.scitotenv.2017.11.029 |
[43] |
XIA W W, ZHANG C X, ZENG X W, FENG Y Z, WENG J H, LIN X G, ZHU J G, XIONG Z Q, XU J, CAI Z C, JIA Z J.Autotrophic growth of nitrifying community in an agricultural soil. The Isme Journal, 2011, 5: 1226-1236.
doi: 10.1038/ismej.2011.5 |
[44] |
LU L, HAN W Y, ZHANG J B, WU Y C, WANG B Z, LIN X G, ZHU J G, CAI Z C, JIA Z J.Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. The Isme Journal, 2012, 6: 1978-1984.
doi: 10.1038/ismej.2012.45 |
[45] | TANG H M, XIAO X P, LI C, CHENG K K, PAN X C, LI W Y.Effects of rhizosphere and long-term fertilization practices on the activity and community structure of ammonia oxidizers under double-cropping rice field. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2019, 69(4): 356-368. |
[46] |
ALVES R J E, WANEK W, ZAPPE A, RICHTER A, SVENNING M M, SCHLEPER C, URICH T. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia- oxidizing archaea. The Isme Journal, 2013, 7: 1620-1631.
doi: 10.1038/ismej.2013.35 |
[47] | GUBRY-RANGIN C, HAI B, QUINCE C, ENGEL M, THOMSON B C, JAMES P, SCHLOTER M, GRIFFITHS R I, PROSSER J I, NICOL G W.Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the USA, 2011, 108(52): 21206-21211. |
[48] |
ZHANG L M, DUFF A M, SMITH C J.Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/ sediment) boundaries in two coastal Bay ecosystems. Environmental Microbiology, 2018, 20(8): 2834-2853.
doi: 10.1111/emi.2018.20.issue-8 |
[49] |
GUBRY-RANGIN C, GRAEME W N, PROSSER J I.Archaea rather than bacteria control nitrification in two agricultural acidic soils. Fems Microbiology Ecology, 2010, 74(3): 566-574.
doi: 10.1111/j.1574-6941.2010.00971.x |
[50] |
LI Y Y, CHAPMAN S J, NICOL G W, YAO H Y.Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 2018, 116: 290-301.
doi: 10.1016/j.soilbio.2017.10.023 |
[51] |
JIANG X J, HOU X Y, ZHOU X, XIN X P, WRIGHT A, JIA Z J. pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 2015, 81: 9-16.
doi: 10.1016/j.soilbio.2014.10.025 |
[52] |
WERTZ S, LEIGH A K K, GRAYSTON S J. Effects of long-term fertilization of forest soils on potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. Fems Microbiology Ecology, 2012, 79(1): 142-154.
doi: 10.1111/j.1574-6941.2011.01204.x |
[53] | 李晨华, 张彩霞, 唐立松, 熊正琴, 王保战, 贾仲君, 李彦. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系. 微生物学报, 2014, 54(3): 319-329. |
LI C H, ZHANG C X, TANG L S, XIONG Z Q, WANG B Z, JIA Z J, LI Y.Effect of long-term fertilizing regime on soil microbial diversity and soil property. Acta Microbiologica Sinica, 2014, 54(3): 319-329. (in Chinese) | |
[54] |
KIM J G, JUNG M Y, PARK S J,RIJPSTRA W I C, SINNINGHE DAMSTÉ J S, MADSEN E L, MIN D, KIM J S, KIM G J, RHEE S K. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environmental Microbiology, 2012, 14(6): 1528-1543.
doi: 10.1111/j.1462-2920.2012.02740.x |
[55] | TOURNA M, STIEGLMEIER M, SPANG A, KONNEKE M, SCHINTLMEISTER A, URICH T, ENGEL M, SCHLOTER M, WAGNER M, RICHTER A, SCHLEPER C.Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the USA, 2011, 108(20): 8420-8425. |
[56] |
LI P P, HAN Y L, HE J Z, ZHANG S Q, ZHANG L M.Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma, 2019, 338: 107-117.
doi: 10.1016/j.geoderma.2018.11.033 |
[57] |
XIAO H F, SCHAEFER D A, YANG X D. pH drives ammonia oxidizing bacteria rather than archaea thereby stimulate nitrification under Ageratina adenophora colonization. Soil Biology and Biochemistry, 2017, 114: 12-19.
doi: 10.1016/j.soilbio.2017.06.024 |
[58] |
HU H W, ZHANG L M, DAI Y, DI H J,HE J Z,. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 2013, 13(8): 1439-1449.
doi: 10.1007/s11368-013-0726-y |
[59] |
DUAN P P, FAN C H, ZHANG Q Q, XIONG Z Q.Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. Science of the Total Environment, 2019, 650: 1787-1794.
doi: 10.1016/j.scitotenv.2018.09.341 |
[60] |
YANG X D, NI K, SHI Y Z, YI X Y, JI L F, MA L F, RUAN J Y.Heavy nitrogen application increases soil nitrification through ammonia-oxidizing bacteria rather than archaea in acidic tea (Camellia sinensis L.) plantation soil. Science of the Total Environment, 2020, 717: 137248.
doi: 10.1016/j.scitotenv.2020.137248 |
[61] |
KITS K D, SEDLACEK C J, LEBEDEVA E V, HAN P, BULAEV A, PJEVAC P, DAEBELER A, ROMANO S, ALBERTSEN M, STEIN L Y, DAIMS H, WAGNER M.Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 2017, 549(7671): 269-272.
doi: 10.1038/nature23679 |
[1] | 陈杨,徐孟泽,王玉红,白由路,卢艳丽,王磊. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 2022, 55(15): 2973-2987. |
[2] | 王蓥燕, 卢圣鄂, 李跃飞, 涂仕华, 张小平, 辜运富. 石灰性紫色水稻土不同土壤深度中厌氧氨氧化细菌对施肥的响应[J]. 中国农业科学, 2017, 50(16): 3155-3163. |
[3] | 周晶,姜昕,周宝库,马鸣超,关大伟,赵百锁,陈三凤,李俊. 长期施用尿素对东北黑土中氨氧化古菌群落的影响[J]. 中国农业科学, 2016, 49(2): 294-304. |
[4] | 王小纯,王晓航,熊淑萍,马新明,丁世杰,吴克远,郭建彪. 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征[J]. 中国农业科学, 2015, 48(13): 2569-2579. |
[5] | 武传东, 辛亮, 李秀颖, 王保莉, 曲东. 长期施肥对黄土旱塬黑垆土氨氧化古菌群落多样性和丰度的影响[J]. 中国农业科学, 2011, 44(20): 4230-4239. |
[6] | 刘桂婷,程林,王保莉,赵其国,曲东 . 长期不同施肥对黄土旱塬黑垆土氨氧化细菌多样性的影响[J]. 中国农业科学, 2010, 43(13): 2706-2714 . |
[7] | 辜运富,云 翔,张小平,涂仕华,孙锡发,Kristina Lindströ,m . 不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响[J]. 中国农业科学, 2008, (12): 4119-4126 . |
|