[1] Hogenhout S A, Ammar E D, Whitfield A E, Redinbaugh M G. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology,2008, 46: 327-359.
[2] Liu Y, Jin W, Wang L, Wang X. Replication-associated proteins encoded by Wheat dwarf virus act as RNA silencing suppressors. Virus Research, 2014, 190: 34-39.
[3] Liu Y, Wang B, Vida G, Karolyi-Cseplo M, Wu B, Wu Y, Wang X. Genomic analysis of the natural population of Wheat dwarf virus in wheat from China and Hungary. Journal of Integrative Agriculture, 2012, 11(12): 2020-2027.
[4] Vacke J. Wheat dwarf virus disease. Biologia Plantarum, 1961, 3(3): 228-233.
[5] Xie J, Wang X, Liu Y, Peng Y, Zhou G. First report of the occurrence of Wheat dwarf virus in wheat in China. Plant Disease, 2007, 91(1): 111.
[6] 王江飞, 柳树宾, 吴蓓蕾, 谢家建, 王锡锋. 陕西韩城严重发生的小麦矮缩病病原鉴定与原因分析. 植物保护, 2008, 34(2): 17-21.
Wang J F, Liu S B, Wu B L, Xie J J, Wang X F. Identification and analyses of the pathogen causing the Wheat dwarf virus in Hancheng of Shaanxi Province, China. Plant Protection, 2008, 34(2): 17-21. (in Chinese)
[7] Hohn T. Plant virus transmission from the insect point of view. Proceeding of the National Academy Sciences of the United States of America, 2007, 104(46): 17905-17906.
[8] 贾东升, 马元元, 杜雪, 陈红燕, 谢联辉, 魏太云. 水稻黑条矮缩病毒在灰飞虱消化系统的侵染和扩散过程. 植物病理学报, 2014, 44(2): 188-194.
Jia D S, Ma Y Y, Du X, Chen H Y, Xie L H, Wei T Y. Infection and spread of Rice black streaked dwarf virus in the digestive system of its insect vector small brown planthopper. Acta Phytopathologica Sinica, 2014, 44(2): 188-194. (in Chinese)
[9] 魏太云, 林含新, 谢联辉. 酵母双杂交系统在植物病毒学上的应用. 福建农业大学学报: 自然科学版, 2003, 32(1): 50-54.
Wei T Y, Lin H X, Xie L H. Application of yeast two-hybrid system to plant virology. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2003, 32(1): 50-54. (in Chinese)
[10] Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230): 245-246.
[11] Wang Y, Mao Q, Liu W, Mar T, Wei T, Liu Y, Wang X. Localization and distribution of Wheat dwarf virus in its vector leafhopper, Psammotettix alienus. Phytopathology, 2014, 104(8): 897-904.
[12] 王亚娇, 任堂雨, 刘艳, 王锡锋. 小麦矮缩病毒外壳蛋白基因的原核表达、抗体制备及应用. 植物病理学报, 2013, 43(4): 362-367.
Wang Y J, Ren T Y, Liu Y, Wang X F. Antiserum preparation of Wheat dwarf virus using coat protein expressed in Escherichia coli and its application. Acta Phytopathologica Sinica,2013, 43(4): 362-367. (in Chinese)
[13] Visser P B, Bol J F. Nonstructural proteins of Tobacco rattle virus which have a role in nematode-transmission: expression pattern and interaction with viral coat protein. Journal of General Virology, 1999, 80: 3273-3280.
[14] Huo Y, Liu W, Zhang F, Chen X, Li L, Liu Q, Zhou Y, Wei T, Fang R, Wang X. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogens, 2014, 10(3): e1003949.
[15] 秦发亮, 刘文文, 李莉, 王锡锋. 利用酵母双杂交技术筛选介体灰飞虱中与水稻条纹病毒病害特异蛋白互作的蛋白质. 中国农业科学, 2014, 47(14): 2784-2794.
Qin F L, Liu W W, Li L, Wang X F. Screening of putative proteins in vector Laodelphax striatellus which are interacted with disease- specific protein of Rice stripe virus by yeast two-hybrid based on the split-ubiquitin. Scientia Agricultura Sinica, 2014, 47(14): 2784-2794. (in Chinese)
[16] Mar T, Liu W, Wang X. Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission. Journal of Proteomics, 2014, 102: 83-97.
[17] Gietz R D, Woods R A. Yeast transformation by the LiAc/SS carrier DNA/PEG method//Method in Molecular Biology, Vol 313: Yeast Protocols: 2nd ed. Humana Press Inc., 2006: 107-120.
[18] Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceeding of the National Academy Sciences of the United States of America, 1998, 95(9): 5187-5192.
[19] Dirnberger D, Messerschmid M, Baumeister R. An optimized split- ubiquitin cDNA-library screening system to identify novel interactors of the human Frizzled 1 receptor. Nucleic Acids Research, 2008, 36(6): e37.
[20] Mockli N, Deplazes A, Hassa P O, Zhang Z, Peter M, Hottiger M O, Stagljar I, Auerbach D. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques, 2007, 42(6): 725-730.
[21] Said H M, Nguyen T T, Dyer D L, Cowan K H, Rubin S A. Intestinal folate transport: identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochimica et Biophysica Acta, 1996, 1281(2): 164-172.
[22] Le Roy C, Wrana J L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Reviews Molecular Cell Biology,2005, 6(2): 112-126.
[23] Donaldson J G, Porat-Shliom N, Cohen L A. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signaling, 2009, 21(1): 1-6.
[24] Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Advanced Drug Delivery Reviews, 2004, 56(8): 1099-1109.
[25] Zhao R, Min S, Wang Y, Campanella E, Low P S, Goldman I D. A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. The Journal of Biological Chemistry, 2009, 284(7): 4267-4274.
[26] Schlesinger D H, Goldstein G. Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature, 1975, 255(5507): 423-424.
[27] Wang Y, Tang C, Wang E, Wang J. PolyUbiquitin chain linkage topology selects the functions from the underlying binding landscape. PLoS Computational Biology, 2014, 10(7): e1003691.
[28] Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna A P, Taconnat L, Deng X, Bejarano E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell, 2011, 23(3): 1014-1032.
[29] Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry, 2012, 81: 291-322.
[30] Shih S C, Sloper-Mould K E, Hicke L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. The EMBO Journal, 2000, 19(2): 187-198.
[31] Schwarz L A, Patrick G N. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Molecular and Cellular Neuroscience, 2012, 49(3): 387-393.
[32] Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annual Review of Cell and Developmental Biology, 2003, 19: 141-172.
[33] Weissman A M. Themes and variations on ubiquitylation. Nature Reviews Molecular Cell Biology, 2001, 2(3): 169-178.
[34] Galan J M, Haguenauer-Tsapis R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. The EMBO Journal, 1997, 16(19): 5847-5854.
[35] Mayr J A, Merkel O, Kohlwein S D, Gebhardt B R, Bohles H. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. The American Journal of Human Genetics, 2007, 80(3): 478-484.
[36] Bliss T V, Douglas R M, Errington M L, Lynch M A. Correlation between long-term cotentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. The Journal of Physiology, 1986, 377: 391-408.
[37] Jorgensen N K, Petersen S F, Hoffmann E K. Thrombin-, bradykinin-, and arachidonic acid-induced Ca2+ signaling in Ehrlich ascites tumor cells.American Journal of Physiology-Cell Physiology,1999, 276(Pt 1): C26-37.
[38] Reid A J, Vermont S J, Cotton J A, Harris D, Hill-Cawthorne G A. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathogens, 2012, 8(3): e1002567.
[39] Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450(7167): 203-218.
[40] Kim Y S, Ryu J H, Han S J, Choi K H, Nam K B, Jang I H, Lemaitre B, Brey P T, Lee W J. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. The Journal of Biological Chemistry, 2000, 275(42): 32721-32727.
[41] Jiggins F M, Kim K W. Contrasting evolutionary patterns in Drosophila immune receptors. Journal of Molecular Evolution, 2006, 63(6): 769-780.
[42] Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D. The genome sequence of Drosophila melanogaster. Science, 2000, 287(5461): 2185-2195.
[43] Anatriello E, Ribeiro J M, de Miranda-Santos I K, Brandão L G, Anderson J M, Valenzuela J G, Maruyama S R, Silva J S, Ferreira B R. An insight into the sialotranscriptome of the brown dog tick, Rhipicephalus sanguineus. BMC Genomics, 2010, 11(1): 450.
[44] Colbourne J K, Pfrender M E, Gilbert D, Thomas W K, Tucker A. The ecoresponsive genome of Daphnia pulex. Science, 2011, 331(6017): 555-561. |