| [1] |
邓娟. 湖川山地猪(罗盘山猪)的保护和开发利用. 中国猪业, 2013, 8(S1): 132-133.
|
|
DENG J. Protection,development and utilization of huchuan mountain pig (compass mountain pig). China Swine Industry, 2013, 8(S1): 132-133. (in Chinese)
|
| [2] |
陈燕. 罗盘山猪利用现状及发展思路. 中国畜禽种业, 2014, 10(8): 21.
|
|
CHEN Y. Utilization status and development ideas of Luopanshan pig. The Chinese Livestock and Poultry Breeding, 2014, 10(8): 21. (in Chinese)
|
| [3] |
周旗, 龙熙, 张亮, 涂志, 潘红梅, 邓娟, 王瑶, 任素碧, 孔莎莎, 王勇胜. 冻存对罗盘山猪成纤维细胞生物学特性的影响. 动物学杂志, 2025, 60(2): 247-262.
|
|
ZHOU Q, LONG X, ZHANG L, TU Z, PAN H M, DENG J, WANG Y, REN S B, KONG S S, WANG Y S. Effects of cryopreservation on the cellular characteristics of fibroblasts isolated from luopanshan pigs. Chinese Journal of Zoology, 2025, 60(2): 247-262. (in Chinese)
|
| [4] |
李建江, 宋锐, 牛葕洲, 林丽果. 我国畜禽遗传资源保护利用现状分析. 西北民族大学学报(自然科学版), 2015, 36(3): 16-21.
|
|
LI J J, SONG R, NIU Y Z, LIN L G. Analysis on the current situation of protection and utilization of livestock and poultry genetic resources in China. Journal of Northwest University for Nationalities (Natural Science), 2015, 36(3): 16-21. (in Chinese)
|
| [5] |
赵宁, 夏少霞, 于秀波, 段后浪, 李瑾璞, 陈亚恒. 基于MaxEnt模型的渤海湾沿岸鸻鹬类栖息地适宜性评价. 生态学杂志, 2020, 39(1): 194-205.
|
|
ZHAO N, XIA S X, YU X B, DUAN H L, LI J P, CHEN Y H. Habitat suitability assessment of shorebirds in Bohai Bay coast using MaxEnt Model. Chinese Journal of Ecology, 2020, 39(1): 194-205. (in Chinese)
|
| [6] |
韩依纹, 方铁树, 蒋韵, 殷利华, 万敏. 高密度城区野猪生境适宜性与“人猪冲突” 潜在风险区识别研究. 中国城市林业, 2024, 22(1): 16-24.
|
|
HAN Y W, FANG T S, JIANG Y, YIN L H, WAN M. A study of wild boar habitat suitability in high-density urban areas and identification of potential risk areas of “human-boar conflicts”. Journal of Chinese Urban Forestry, 2024, 22(1): 16-24. (in Chinese)
|
| [7] |
曾伟英, 王德智, 叶琛, 龚宇, 王昱熙, 张全发. 基于优化的MaxEnt模型对全国巨柏潜在分布的预测. 植物科学学报, 2025, 43(1): 52-62.
|
|
ZENG W Y, WANG D Z, YE C, GONG Y, WANG Y X, ZHANG Q F. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling. Plant Science Journal, 2025, 43(1): 52-62. (in Chinese)
|
| [8] |
WARNE R K, CHABER A L. Assessing disease risks in wildlife translocation projects: A comprehensive review of disease incidents. Animals, 2023, 13(21): 3379.
doi: 10.3390/ani13213379
|
| [9] |
许庆伟, 王洋, 李志琦, 罗博, 郭涛, 余海燕, 张杰, 王泽宇, 何勤天, 梁云栋, 叶思丽, 黄海洋, 石孝均, 张宇亭. 不同种植制度下施肥管理对紫色土的致酸效应. 植物营养与肥料学报, 2025, 31(3): 407-418.
|
|
XU Q W, WANG Y, LI Z Q, LUO B, GUO T, YU H Y, ZHANG J, WANG Z Y, HE Q T, LIANG Y D, YE S L, HUANG H Y, SHI X J, ZHANG Y T. Effects of fertilization management on acidification of purple soil under different cropping systems. Journal of Plant Nutrition and Fertilizers, 2025, 31(3): 407-418. (in Chinese)
|
| [10] |
孙平, 于鸿浩, 赵新全, 王德华. 青藏高原异地半圈养藏羚警戒行为的适应性研究. 动物学研究, 2011, 32(5): 561-565.
|
|
SUN P, YU H H, ZHAO X Q, WANG D H. Adaptation of vigilance behavior in ex situ conservation of Tibetan Antelope. Zoological Research, 2011, 32(5): 561-565. (in Chinese)
|
| [11] |
STEINFELD H, WASSENAAR T, JUTZI S. Livestock production systems in developing countries: status, drivers, trends. Revue Scientifique et Technique (International Office of Epizootics), 2006, 25(2): 505-516.
|
| [12] |
HO S M, JOHNSON A, TARAPORE P, JANAKIRAM V, ZHANG X, LEUNG Y K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR Journal, 2012, 53(3/4): 289-305.
doi: 10.1093/ilar.53.3-4.289
|
| [13] |
LARSEN K, CHRISTENSEN T B, HØJBERG O, SØRENSEN M T. Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicology Reports, 2022, 9: 298-310.
doi: 10.1016/j.toxrep.2022.02.007
pmid: 35284244
|
| [14] |
QIU S N, FU H Y, ZHOU R Y, YANG Z, BAI G D, SHI B M. Toxic effects of glyphosate on intestinal morphology, antioxidant capacity and barrier function in weaned piglets. Ecotoxicology and Environmental Safety, 2020, 187: 109846.
doi: 10.1016/j.ecoenv.2019.109846
|
| [15] |
MACHA E S, MEYER L C R, LEIBERICH M, HOFMEYR M, HOOIJBERG E H. Promoting Rhinoceros welfare during transit: veterinarians' perspectives on transportation practices. Journal of the South African Veterinary Association, 2024. DOI: 10.36303/JSAVA.670.
|
| [16] |
KIM Y J, SONG M H, LEE S I, LEE J H, OH H J, AN J W, CHANG S Y, GO Y B, PARK B J, JO M S, LEE C G, KIM H B, CHO J H. Evaluation of pig behavior changes related to temperature, relative humidity, volatile organic compounds, and illuminance. Journal of Animal Science and Technology, 2021, 63(4): 790-798.
doi: 10.5187/jast.2021.e89
pmid: 34447956
|
| [17] |
LAGUA E B, MUN H S, AMPODE K M B, PARK H R, SHARIFUZZAMAN M, HASAN M K, KIM Y H, YANG C J. Minimum carbon dioxide is a key predictor of the respiratory health of pigs in climate-controlled housing systems. Porcine Health Management, 2024, 10(1): 59.
doi: 10.1186/s40813-024-00408-3
pmid: 39707558
|
| [18] |
PATTERSON R, NEVEL A, DIAZ A V, MARTINEAU H M, DEMMERS T, BROWNE C, MAVROMMATIS B, WERLING D. Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b. Veterinary Microbiology, 2015, 177(3/4): 261-269.
doi: 10.1016/j.vetmic.2015.03.010
|
| [19] |
GAO Z K, WANG R F, YANG Y, JIN S Y, WANG X Z, SUN Q Q, SHI K. Habitat suitability and relative abundance of wild boars in the east-central Tianshan Mountains, China. The Journal of Wildlife Management, 2025, 89(1): e22683.
doi: 10.1002/jwmg.v89.1
|
| [20] |
YANG G M, PENG C C, YANG X W, GUO Q Y, SU H J. Habitat suitability and crop damage risk caused by wild boar in Guizhou Plateau, China. The Journal of Wildlife Management, 2024, 88(3): e22542.
doi: 10.1002/jwmg.v88.3
|
| [21] |
KATWAL S, SINGH Y, BEDI J S, CHANDRA M, HONPARKHE M. Microbial dynamics and climatic interactions in pig sheds: Insights into airborne microbes and particulate matter concentrations. Environmental Monitoring and Assessment, 2024, 196(6): 511.
doi: 10.1007/s10661-024-12624-z
pmid: 38703303
|
| [22] |
VILAS BOAS RIBEIRO B P, LANFERDINI E, PALENCIA J Y P, LEMES M A G, TEIXEIRA DE ABREU M L, DE SOUZA CANTARELLI V, FERREIRA R A. Heat negatively affects lactating swine: A meta-analysis. Journal of Thermal Biology, 2018, 74: 325-330.
doi: S0306-4565(18)30127-X
pmid: 29801645
|
| [23] |
MARKOV N, PANKOVA N, MORELLE K. Where winter rules: Modeling wild boar distribution in its north-eastern range. Science of the Total Environment, 2019, 687: 1055-1064.
doi: 10.1016/j.scitotenv.2019.06.157
|
| [24] |
LEE O, SCHLICHTING P E, JO Y S. Habitat model for wild boar (Sus scrofa) in Bukhansan National Park, Seoul. Journal of Urban Ecology, 2022, 8(1): juac027.
|
| [25] |
LEUS K. Ex-situ conservation of wild pigs and peccaries:Roles, status, management successes and challenges. Ecology, Conservation and Management of Wild Pigs and Peccaries. Cambridge, UK: Cambridge University Press, 2017: 420-436.
|
| [26] |
ZHANG Y Q, MO C Y, PAN Y Q, YANG P B, DING X D, LEI Q, KANG P. Responses of soil microbial survival strategies and functional changes to wet-dry cycle events. Microorganisms, 2023, 11(11): 2783.
doi: 10.3390/microorganisms11112783
|
| [27] |
SCHLOSSER-BRANDENBURG J, MIDHA A, MUGO R M, NDOMBI E M, GACHARA G, NJOMO D, RAUSCH S, HARTMANN S. Infection with soil-transmitted helminths and their impact on coinfections. Frontiers in Parasitology, 2023, 2: 1197956.
doi: 10.3389/fpara.2023.1197956
|
| [28] |
SUN X, LIDDICOAT C, TIUNOV A, WANG B, ZHANG Y Y, LU C Y, LI Z P, SCHEU S, BREED M F, GEISEN S, ZHU Y G. Harnessing soil biodiversity to promote human health in cities. NPJ Urban Sustainability, 2023, 3: 5.
doi: 10.1038/s42949-023-00086-0
|
| [29] |
DEVAU N, LE CADRE E, HINSINGER P, JAILLARD B, GÉRARD F. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches. Applied Geochemistry, 2009, 24(11): 2163-2174.
doi: 10.1016/j.apgeochem.2009.09.020
|
| [30] |
HUMER E, SCHWARZ C, SCHEDLE K. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 2015, 99(4): 605-625.
doi: 10.1111/jpn.12258
pmid: 25405653
|
| [31] |
HASTAD C W, DRITZ S S, TOKACH M D, GOODBAND R D, NELSSEN J L, DEROUCHEY J M, BOYD R D, JOHNSTON M E. Phosphorus requirements of growing-finishing pigs reared in a commercial environment. Journal of Animal Science, 2004, 82(10): 2945-2952.
pmid: 15484946
|
| [32] |
SMITH L, SPARKS C, GABLER N K. 255 evaluation of growth performance and bone mineral density in grower pigs fed phosphorus, calcium, and vitamin D deficient diets. Journal of Animal Science, 2023, 101(Supplement_2): 156-157.
|
| [33] |
MOITA V H C, KIM S W. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa- associated microbiota, ileal nutrient digestibility, bone parameters, and intestinal health, and growth performance of nursery pigs. Journal of Animal Science, 2023, 101: skad134.
|
| [34] |
牛现琇. 日粮中添加植酸酶对猪磷营养的研究进展. 浙江畜牧兽医, 2025, 50(1): 11-12.
|
|
NIU X X. The research progress on adding phytase to the diet for phosphorus nutrition in pigs. Zhejiang Journal Animal Science and Veterinary Medicine, 2025, 50(1): 11-12. (in Chinese)
|
| [35] |
李笑然, 张丽阳, 廖秀冬, 马雪莲, 吕林, 罗绪刚. 我国畜禽饲料资源中矿物元素钾含量的调查研究. 动物营养学报, 2025, 37(1): 672-681.
doi: 10.12418/CJAN2025.058
|
|
LI X R, ZHANG L Y, LIAO X D, MA X L, LÜ L, LUO X G. Investigation and study on potassium contents in feed resources for livestock and poultry in China. Chinese Journal of Animal Nutrition, 2025, 37(1): 672-681. (in Chinese)
doi: 10.12418/CJAN2025.058
|
| [36] |
LAUTROU M, NARCY A, DOURMAD J Y, POMAR C, SCHMIDELY P, LÉTOURNEAU MONTMINY M P. Dietary phosphorus and calcium utilization in growing pigs: Requirements and improvements. Frontiers in Veterinary Science, 2021, 8: 734365.
doi: 10.3389/fvets.2021.734365
|
| [37] |
RENAUDEAU D, DOURMAD J Y. Review: Future consequences of climate change for European Union pig production. Animal, 2022, 16: 100372.
doi: 10.1016/j.animal.2021.100372
|
| [38] |
PRIBILOVA M, SKALICKOVA S, URBANKOVA L, BAHOLET D, NEVRKLA P, KOPEC T, SLAMA P, HORKY P. Monitoring of taurine dietary supplementation effect on parameters of Duroc boar ejaculate in summer season. PLoS ONE, 2024, 19(1): e0288317.
|
| [39] |
TAKAMI K. Approach to ex-situ conservation by zoos and aquariums. Japanese Journal of Zoo and Wildlife Medicine, 2019, 24(2): 49-57.
doi: 10.5686/jjzwm.24.49
|