中国农业科学 ›› 2021, Vol. 54 ›› Issue (19): 4229-4242.doi: 10.3864/j.issn.0578-1752.2021.19.017
禹保军1(),邓占钊2,辛国省3,蔡正云1,顾亚玲1,张娟1(
)
收稿日期:
2020-07-27
接受日期:
2020-10-30
出版日期:
2021-10-01
发布日期:
2021-10-12
通讯作者:
张娟
作者简介:
禹保军,E-mail: 基金资助:
YU BaoJun1(),DENG ZhanZhao2,XIN GuoSheng3,CAI ZhengYun1,GU YaLing1,ZHANG Juan1(
)
Received:
2020-07-27
Accepted:
2020-10-30
Online:
2021-10-01
Published:
2021-10-12
Contact:
Juan ZHANG
摘要:
【目的】探究静原鸡肌肉组织肌苷酸沉积过程中关键调控因子的调节作用,利用lncRNA-miRNA-mRNA关联分析鉴定与肌苷酸特异性沉积相关的LNC_003828、gga-miR-107-3p和MINPP1,其作为肉质研究的候选基因,为分子辅助育种提高肌肉品质提供理论基础。【方法】测定15只静原鸡胸肌和腿肌的肌苷酸含量,筛选高肌苷酸含量的胸肌和低肌苷酸含量的腿肌各3个样本提取总RNA,质量检测合格后构建cDNA文库、PCR扩增,利用Agilent 2100对文库质量进行评价,库检合格后送Illumina-Hiseq平台进行转录组测序。利用生物信息学方法筛选出静原鸡肌肉组织不同部位差异表达的MINPP1、gga-miR-107-3p和LNC_003828,进行GO注释和蛋白互作网络分析MINPP1的功能。采用qRT-PCR方法检测LNC_003828、gga-miR-107-3p和MINPP1在静原鸡胸肌和腿肌组织中的表达情况,并分析其与肌苷酸含量的相关性。【结果】测序样品间基因表达水平相关性R2>0.9,即试验样本之间基因表达可用于后续的差异基因分析。参与肌苷酸合成和代谢的糖酵解/糖异生途径中检测出3个差异表达基因MINPP1、PKM和ALDH9A1。互作分析发现lncRNA-miRNA-mRNA网络图中共有17个miRNA(9个上调,8个下调)、44个mRNA(16个上调,28个下调)和155个lncRNA(68个上调、87个下调),核心节点gga-miR-107-3p互作的靶基因有MINPP1、靶lncRNA有LNC_003828。GO富集分析发现MINPP1基因具有磷酸酶活性、双磷酸甘油酸酯磷酸酶活性等功能;蛋白互作网络中MINPP1基因与参与糖酵解/糖异生和氨基酸生物合成通路中的PGAM1、ENO1、BPGM基因均有互作关系。qRT-PCR结果表明,静原鸡胸肌LNC_003828和gga-miR-107-3p的相对表达量低于腿肌,但差异不显著;胸肌MINPP1的相对表达量显著低于腿肌(P<0.05)。静原鸡胸肌和腿肌组织中gga-miR-107-3p的表达量与LNC_003828表达量均呈正相关,与MINPP1的表达量均呈负相关。胸肌和腿肌组织中LNC_003828、gga-miR-107-3p的表达量与肌苷酸含量均呈正相关,且差异均不显著;胸肌MINPP1表达量与肌苷酸含量呈负相关,腿肌MINPP1表达量与肌苷酸含量呈显著负相关(P<0.05)。综上所述,推测静原鸡肌肉组织中gga-miR-107-3p作为核心调节因子吸附LNC_003828,影响MINPP1基因调控肌肉肌苷酸特异性沉积,从而改善肉质。【结论】筛选出LNC_003828、gga-miR-107-3p和MINPP1为影响肌苷酸特异性沉积的候选调控因子。
禹保军,邓占钊,辛国省,蔡正云,顾亚玲,张娟. 静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828- gga-miR-107-3p-MINPP1的关联分析[J]. 中国农业科学, 2021, 54(19): 4229-4242.
YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue[J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
表3
引物信息"
引物名称 Primer name | 序列 Sequence (5'→3') | 退火温度 Tm (℃) |
---|---|---|
LNC_003828-F LNC_003828-R | CCACATACAACCAGTCTCT CCACCATACATCCACTCT | 58 |
MINPP1-F | GTGGATGAGAGCAGAAGT | 58 |
MINPP1-R | AGAAGTGGCTGAAGTGTT | |
β-actin-F β-actin-R | ATGGACTCTGGTGATGGTGTTAC TCGGCTGTGGTGGTGAAG | 58 |
gga-miR-107-3p-F gga-miR-107-3p-R U6-F U6-R | CGCGCGAGCTTCTTTACAG CAGTGCAGGGTCCGAGGTAT CTCGCTTCGGCAGCACATATACT ACGCTTCACGAATTTGCGTGTC |
图2
糖酵解/糖异生通路中的差异表达基因 Starch and sucrose metabolism:淀粉和蔗糖代谢;α-D-Glucose-1P:α-D-葡萄糖-1P;D-Glucose (extracellular):D-葡萄糖(细胞外);Arbutin (extracellular):熊果苷(细胞外);Salicin (extracellular):水杨苷(细胞外);β-D-Fructose-6P:β-D-果糖-6P;Glycerone-6P:甘油酮-6P;Glyceraldehyde:甘油醛;Pentose phosphate pathway:磷酸戊糖途径;Glycerate:甘油酸酯;Carbon fixation in photosynthetic organisms:光合作用生物中的碳固定;Phosphoenol pyruvate:磷酸烯醇丙酮酸;Citrate cycle:柠檬酸循环;Oxaloacetate:草酰乙酸;Pyruvate metabolism:丙酮酸代谢;Acetyl CoA:乙酰辅酶A;2-Hydroxyethy1-ThPP:2-羟乙基1-ThPP;L-Lactate:乳酸;Dihydrolipoamide:二氢硫辛酰胺;S-Acetyldihydrolipoamide-E:S-乙酰二氢硫辛酰胺-E;Lipoamide-E:硫辛酰胺-E;Propanoate metabolism:丙酸代谢;Acetate:醋酸;Acetaldehyde:乙醛;Ethanol:乙醇"
表7
MINPP1基因GO注释分析"
GO号 GO accession | 描述 Description | 条目类型 Term type | 物种 Species |
---|---|---|---|
GO:0016791 | 磷酸酶活性 Phosphatase activity | 分子功能 Molecular_function | 原鸡 Gallus gallus |
GO:0034416 | 双磷酸甘油酸酯磷酸酶活性 Bisphosphoglycerate Phosphatase activity | 分子功能 Molecular_function | 原鸡 Gallus gallus |
GO:0005783 | 内质网 Endoplasmic reticulum | 细胞组分 Cell component | 原鸡 Gallus gallus |
[1] |
BLONDE G D, SPECTOR A C. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor. Chemical Senses, 2017, 42(5):393-404.
doi: 10.1093/chemse/bjx015 |
[2] | 徐英, 李石友, 李琦华, 段刚, 杨国荣, 梁应海. 蛋白质水平对牛肉肌苷酸含量的影响. 西南农业学报, 2011, 24(1):294-296. |
XU Y, LI S Y, LI Q H, DUAN G, YANG G R, LIANG Y H. Effect of protein levels on beef inosine acid content. Southwest China Journal of Agricultural Sciences, 2011, 24(1):294-296. (in Chinese) | |
[3] | 母童, 张娟, 赵平, 顾亚玲, 刘丽元, 杨彦军, 安克龙, 王有. 静原鸡ELOVL2和ELOVL5基因表达的组织特异性研究. 浙江农业学报, 2017, 29(8):1290-1296. |
MU T, ZHANG J A, ZHAO P, GU Y L, LIU L Y, YANG Y J, AN K L, WANG Y. Tissue-specific expression analysis of ELOVL2 and ELOVL5 genes in Jingyuan chicken. Acta Agriculturae Zhejiangensis, 2017, 29(8):1290-1296.(in Chinese) | |
[4] |
MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 2009, 10(3):155-159.
doi: 10.1038/nrg2521 |
[5] | 郑伟. LncRNA-miRNA-mRNA相互作用初步研究[D]. 北京: 中国人民解放军军事医学科学院, 2017. |
ZHENG W. Preliminary study of LncRNA-miRNA-mRNA interaction[D]. Beijing: Chinese Academy of Military Medical Sciences, 2017. (in Chinese) | |
[6] |
BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297.
doi: 10.1016/S0092-8674(04)00045-5 |
[7] |
SPIZZO R, ALMEIDA M I, COLOMBATTI A, CALIN G A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43):4577-4587.
doi: 10.1038/onc.2011.621 |
[8] |
BERNSTEIN E, ALLIS C D. RNA meets chromatin. Genes & Development, 2005, 19(14):1635.
doi: 10.1101/gad.1324305 |
[9] |
EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 2007, 4(9):721-726.
doi: 10.1038/nmeth1079 |
[10] |
CARETTI G, SCHILTZ R L, DILWORTH F J, DI PADOVA M, ZHAO P, OGRYZKO V, FULLER-PACE F V, HOFFMAN E P, TAPSCOTT S J, SARTORELLI V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Developmental Cell, 2006, 11(4):547-560.
doi: 10.1016/j.devcel.2006.08.003 |
[11] |
CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
doi: 10.1016/j.cell.2011.09.028 |
[12] |
HUANG W L, ZHANG X X, LI A, XIE L L, MIAO X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50):87539-87553.
doi: 10.18632/oncotarget.v8i50 |
[13] |
ZOU C, LI S, DENG L L, GUAN Y, CHEN D, YUAN X K, XIA T R, HE X L, SHAN Y W, LI C C. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig. Genes, 2017, 8(8):203.
doi: 10.3390/genes8080203 |
[14] |
SHEN L Y, CHEN L, ZHANG S H, ZHANG Y, WANG J Y, ZHU L. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Science, 2016, 116:201-206.
doi: 10.1016/j.meatsci.2016.02.023 |
[15] | CASIRO A, VELEZ-IRIZARRY D, BATES R O, ERNST C W, STEIBEL J P. 030 Genomewide association study for meat quality traits in an F2 Duroc × Piétrain population. Journal of Animal Science, 2016, 94(2):14-15. |
[16] | LIU G, UPDIKE M S. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 2012(2):60-67. |
[17] |
HONG J S, NOH S H, LEE J S, KIM J M, HONG K C, LEE Y S. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene, 2012, 506(1):211-216.
doi: 10.1016/j.gene.2012.06.050 |
[18] |
SHEN L Y, DU J J, XIA Y D, TAN Z D, FU Y H, YANG Q, LI X W, TANG G Q, JIANG Y Z, WANG J Y, LI M Z, ZHANG S H, ZHU L. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Scientific Reports, 2016, 6:32186.
doi: 10.1038/srep32186 |
[19] |
MA J D, WANG H M, LIU R, JIN L, TANG Q Z, WANG X, JIANG A A, HU Y D, LI Z W, ZHU L, LI R Q, LI M Z, LI X W. The miRNA transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types. International Journal of Molecular Sciences, 2015, 16(5):9635-9653.
doi: 10.3390/ijms16059635 |
[20] |
WANG Q, QI R L, WANG J, HUANG W M, WU Y J, HUANG X F, YANG F Y, HUANG J X. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 2017, 618:49-56.
doi: 10.1016/j.gene.2017.04.013 |
[21] |
CAI Z W, ZHANG L F, JIANG X L, SHENG Y F, XU N Y. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Research in Veterinary Science, 2015, 99:99-104.
doi: 10.1016/j.rvsc.2014.12.012 |
[22] |
CHI H, TILLER G E, DASOUKI M J, ROMANO P R, WANG J, O'KEEFE R J, PUZAS J E, ROSIER R N, REYNOLDS P R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics, 1999, 56(3):324-336.
doi: 10.1006/geno.1998.5736 |
[23] |
CAFFREY J J, HIDAKA K, MATSUDA M, HIRATA M, SHEARS S B. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Letters, 1999, 442(1):99-104.
doi: 10.1016/S0014-5793(98)01636-6 |
[24] |
MOURELATOS Z, DOSTIE J, PAUSHKIN S, SHARMA A, CHARROUX B, ABEL L, RAPPSILBER J, MANN M, DREYFUSS G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 2002, 16(6):720-728.
doi: 10.1101/gad.974702 |
[25] |
FINNERTY J R, WANG W X, HEBERT S S, WILFRED B R, MAO G G, NELSON P T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. Journal of Molecular Biology, 2010, 402(3):491-509.
doi: 10.1016/j.jmb.2010.07.051 |
[26] | 虎红红, 母童, 马正旭, 冯小芳, 蔡正云, 黄增文, 顾亚玲, 辛国省, 张娟. 基于RNA-seq技术对静原鸡不同部位肉质相关差异基因的筛选. 基因组学与应用生物学, 2019.(网络首发). |
HU H H, MU T, MA Z X, FENG X F, CAI Z Y, HUANG Z W, GU Y L, XIN G S, ZHANG J. Screening of differentially expressed genes related to meat quality in different parts of jingyuan chicken based on RNA-Seq technology. Genomics and Applied Biology, 2019. (in Chinese)(Network starting) | |
[27] | ZHANG H J, PAN J, LIANG J, XIA X X. High-pressure effects on the mechanism of accumulated inosine 5 '-monophosphate. Innovative Food Science & Emerging Technologies, 2018, 45:330-334. |
[28] |
RUDOLPH F B. The biochemistry and physiology of nucleotides. Journal of Nutrition, 1994, 124(suppl_1):124S-127S.
doi: 10.1093/jn/124.suppl_1.124S |
[29] |
HAMANO Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens. British Poultry Science, 2016, 57(4):501-514.
doi: 10.1080/00071668.2016.1184227 |
[30] |
MATSUISHI M, TSUJI M, YAMAGUCHI M, KITAMURA N, TANAKA S, NAKAMURA Y, OKITANI A. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle. Animal Science Journal, 2016, 87(11):1407-1412.
doi: 10.1111/asj.2016.87.issue-11 |
[31] | 野崎义孝, 南基哲, 蒋国文. 鸡肉的鲜度与K值(上). 国外畜牧科技, 1994(3):31-32. |
YE Q, NAN J Z, JIANG G W. The freshness and K value of chicken (up). Animal Science Abroad, 1994(3):31-32.(in Chinese) | |
[32] | 王述柏. 鸡肉肌苷酸沉积规律及营养调控研究[D]. 北京: 中国农业科学院, 2004. |
WANG S B. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese) | |
[33] | 陈继兰. 鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究[D]. 北京: 中国农业大学, 2004. |
CHEN J L. Studies on inheritance and candidate genes of inosine-5'- monophosphate and intramuscular fat contents in chicken meat[D]. Beijing: China Agricultural University, 2004. (in Chinese) | |
[34] | 刘望夷, 竺来发, 翁志发, 沈洪民. 肉用鸡肌肉中肌苷酸含量的比较. 中国农业科学, 1980(4):79-83. |
LIU W Y, ZHU L F, WENG Z F, SHEN H M. A comparative study of inosinic acid contents in chicken muscle. Scientia Agricultura Sinica, 1980(4):79-83. (in Chinese) | |
[35] | 苏淑贞, 朱汉炎, 刘建樑, 李民. 鹌鹑、鸡、鸽子肌肉中肌苷酸含量的比较. 中国家禽, 1987(2):32-33+35. |
SU S Z, ZHU H Y, LIU J L, LI M. Comparison of inosinic acid content in muscle of quail, chicken and pigeon. China Poultry, 1987(2):32-33+35. (in Chinese) | |
[36] | 姬舒云. 基于转录组学和代谢组学研究苏氨酸水平对肉鸡肠道的影响[D]. 杨凌: 西北农林科技大学, 2019. |
JI S Y. Effects of threonine levels on broilers intestinal based on teanscriptology and metabomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese) | |
[37] | PANASYUK G, ESPEILLAC C, CHAUVIN C, PRADELLI L A, HORIE Y, SUZUKI A, ANNICOTTE J S, LLUIS-FAJAS, FORETZ M, VERDEGUER F, PONTOGLIO M, FERRE P, SCOAZEC J Y, BIRNBAUM M, RICCI J E, PENDE M. PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3(1). |
[38] |
PRESEK P, REINACHER M, EIGENBRODT E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus. FEBS Letters, 1988, 242(1):194-198.
doi: 10.1016/0014-5793(88)81014-7 |
[39] |
ALI N, CRAXTON A, SHEARS S B. Hepatic Ins(1, 3, 4, 5)P4 3-phosphatase is compartmentalized inside endoplasmic Reticulum. The Journal of Biological Chemistry, 1993, 268(9):6161-6167.
doi: 10.1016/S0021-9258(18)53233-6 |
[40] |
KILAPARTY S P, AGARWAL R, SINGH P, KANNAN K, ALI N. Endoplasmic Reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): A possible role for Minpp1 in cellular stress response. Cell Stress and Chaperones, 2016, 21(4):593-608.
doi: 10.1007/s12192-016-0684-6 |
[41] | CHO J, KING J S, QIAN X, HARWOOD A J, SHEARS S B. Dephosphorylation of 2,3-bisphosphoglycerate by MIPP expands the regulatory capacity of the rapoport-luebering glycolytic shunt. Proceedings of the National academy of Sciences of the United States of America, 2008, 105(16):5998-6003. |
[42] |
BALLESTER M, AMILLS M, GONZÁLEZ-RODRÍGUEZ O, CARDOSO T F, PASCUAL M, GONZÁLEZ-PRENDES R, PANELLA-RIERA N, DÍAZ I, TIBAU J, QUINTANILLA R. Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics, 2018, 19(1):682.
doi: 10.1186/s12864-018-5071-5 |
[43] |
OUYANG H J, HE X M, LI G H, XU H P, JIA X Z, NIE Q H, ZHANG X Q. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. International Journal of Molecular Sciences, 2015, 16(7):16242-16262.
doi: 10.3390/ijms160716242 |
[44] |
WU N, GAUR U, ZHU Q, CHEN B, XU Z, ZHAO X, YANG M, LI D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Animal Genetics, 2017, 48(2):205-216.
doi: 10.1111/age.2017.48.issue-2 |
[45] |
HE J, WANG W Q, LU L Z, TIAN Y, NIU D, REN J D, DONG L Y, SUN S W, ZHAO Y, CHEN L, SHEN J L, LI X H. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Scientific Reports, 2016, 6:27418.
doi: 10.1038/srep27418 |
[46] |
LI H, WANG S H, YAN F B, LIU X J, JIANG R R, HAN R L, LI Z J, LI G X, TIAN Y D, KANG X T, SUN G R. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene, 2015, 566(1):8-12.
doi: 10.1016/j.gene.2015.03.037 |
[47] | 魏雪锋. miR-378a-3p、miR-107和相关circRNA调控牛肌细胞发育的机制研究[D]. 杨凌: 西北农林科技大学, 2017. |
WEI X F. Mechanism study on miR-378a-3p, miR-107 and related circRNA regulating bovine myoblasts development[D]. Yangling: Northwest A & F University, 2017. (in Chinese) | |
[48] | ZHANG J J, WANG C Y, HUA L, YAO K H, CHEN J T, HU J H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. International Journal of Clinical and Experimental Pathology, 2015, 8(5):5168-5174. |
[49] |
CHEN H Y, LIN Y M, CHUNG H C, LANG Y D, LIN C J, HUANG J, WANG W C, LIN F M, CHEN Z, HUANG H D, SHYY J Y J, LIANG J T, CHEN R H. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Research, 2012, 72(14):3631-3641.
doi: 10.1158/0008-5472.CAN-12-0667 |
[50] | WANG P, WU T Y, ZHOU H, JIN Q Q, HE G Q, YU H Y, XUAN L J, WANG X, TIAN L L, SUN Y N, LIU M, QU L M. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. Journal of Experimental & Clinical Cancer Research, 2016, 35:22. |
[51] |
CHEN L, LI Z Y, XU S Y, ZHANG X J, ZHANG Y A, LUO K, LI W P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cellular and Molecular Neurobiology, 2016, 36(1):113-120.
doi: 10.1007/s10571-015-0225-3 |
[52] |
HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441):384-388.
doi: 10.1038/nature11993 |
[53] | PARASKEVOPOULOU M D, HATZIGEORGIOU A G. Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology (Clifton, N J), 2016, 1402(1):271-286. |
[54] |
WEI N, WANG Y, XU R X, WANG G Q, XIONG Y, YU T Y, YANG G S, PANG W J. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2):133-140.
doi: 10.1111/age.2015.46.issue-2 |
[55] | 姜修英, 武春艳, 董翔宇, 高卓然, 李辉, 杜志强. 鸡PPARγ基因相关长链非编码RNA的鉴定及其转录调控. 农业生物技术学报, 2018, 26(11):1909-1918. |
JIANG X Y, WU C Y, DONG X Y, GAO Z R, LI H, DU Z Q. Identification of a long non-coding RNA related to PPARγ gene and study on its transcriptional regulation in chicken(Gallus gallus). Journal of Agricultural Biotechnology, 2018, 26(11):1909-1918. (in Chinese) | |
[56] | ZHANG T, ZHANG X Q, HAN K P, ZHANG G X, WANG J Y, XIE K Z, XUE Q A. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3 (Bethesda, Md), 2017, 7(3):953-966. |
[57] | LIU F Q, CHEN Q, CHEN F, WANG J, GONG R J, HE B C. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(10):1449-1457. |
[58] |
CHEN X, TAN X R, LI S J, ZHANG X X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 2019, 235:116829.
doi: 10.1016/j.lfs.2019.116829 |
[1] | 徐善金, 虞德兵, 汪峰, 何宗亮, 张剑锋, 于海龙, 杜文兴. 鸭腺苷琥珀酸裂解酶基因序列特征及表达与肌肉肌苷酸含量的相关性分析[J]. 中国农业科学, 2012, 45(4): 774-785. |
[2] | 汪以真,许梓荣,冯杰. 甜菜碱对猪肉品质的影响及机理探讨[J]. 中国农业科学, 2000, 33(1): 94-99 . |
|