中国农业科学 ›› 2019, Vol. 52 ›› Issue (17): 2951-2961.doi: 10.3864/j.issn.0578-1752.2019.17.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

基于TWDTW的时间序列GF-1 WFV农作物分类

邱鹏勋,汪小钦(),茶明星,李娅丽   

  1. 福州大学/空间数据挖掘与信息共享教育部重点实验室/卫星空间信息技术综合应用国家地方联合工程研究中心/数字中国研究院(福建),福州350108
  • 收稿日期:2019-04-20 接受日期:2019-07-03 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: 汪小钦
  • 作者简介:邱鹏勋,E-mail:490909513@qq.com。
  • 基金资助:
    国家重点研发计划课题(2017YFB0504203);中央引导地方发展专项(2017L3012)

Crop Identification Based on TWDTW Method and Time Series GF-1 WFV

QIU PengXun,WANG XiaoQin(),CHA MingXing,LI YaLi   

  1. Fuzhou University/Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education/National & Local Joint Engineering Research Center of Satellite Geospatial Information Technology/The Academy of Digital China (Fujian), Fuzhou 350108
  • Received:2019-04-20 Accepted:2019-07-03 Online:2019-09-01 Published:2019-09-10
  • Contact: WANG XiaoQin

摘要:

【目的】焉耆盆地是新疆重要的特色农产品生产基地,农作物种植结构较为复杂。利用时间序列的遥感数据对研究区内的农作物进行分类识别,获得不同农作物的空间分布、种植面积等信息,为政府部门制定粮食政策、经济计划提供重要依据。同时探讨时间加权的动态时间弯曲(time weighted dynamic time warping,TWDTW)方法在农作物分类识别中的适用性以及高分一号(GF-1)WFV在农业领域的应用潜力。【方法】以新疆焉耆盆地为研究区域,利用2018年作物生长季的GF-1 WFV时间序列数据集计算归一化植被指数(NDVI),基于TWDTW方法开展农作物分类识别研究。分别采集不同作物的样本点,形成各作物NDVI的标准序列。利用TWDTW相似性匹配算法计算每个待分类像元与不同作物标准序列间的相似度距离,距离值越小则相似性越高,通过对比确定像元的农作物类型,得到最终的分类结果,同时根据时间序列NDVI曲线建立决策树(decision trees,DTs)分类规则,人工设置分类阈值得到分类结果,并与TWDTW方法的结果进行对比分析。【结果】2种方法的分类结果较为一致,辣椒的种植范围最广,小麦主要分布在焉耆盆地北部和西部的农二师二十一团,番茄和甜菜的种植分布较为零星。在种植面积统计中,辣椒的种植面积最大,其后依次为番茄、小麦和甜菜。利用野外样本点对决策树和TWDTW两种方法的分类结果进行精度验证,总体精度分别为89.58%和90.97%,kappa系数为0.804和0.830,TWDTW方法的分类精度相比于决策树法略有提高。【结论】相比于决策树分类方法,TWDTW方法的分类精度略有提高的同时,分类结果客观可靠,而且算法不受地域因素限制,具有较强的灵活性和适用性。基于密集时相的GF-1 WFV数据集,采用TWDTW算法对农作物进行分类,得到较好的分类结果,能够满足农业部门的管理决策需求,该方法在农业领域具有较大的应用和推广价值。

关键词: TWDTW, 时间序列, 高分一号, 农作物分类, 决策树

Abstract:

【Objective】 Yanqi Basin is an important production base of characteristic agricultural products in Xinjiang, and the planting structure of crops is complicated. In this study, the time series remote sensing data were used to classify and identify crops in the study area, so as to obtain the spatial distribution of different crops and their planting areas, which were the important basis for government sectors to formulate grain policies and economic plans. At the same time, the applicability of time-weighted dynamic time warping (TWDTW ) method in crop classification and the application potential of GF-1 WFV in agriculture were also discussed.【Method】 The normalized vegetation index (NDVI), calculated from the 2018 time series GF-1 WFV data set in Yanqi Basin, Xinjiang, was used to study the crops recognition based on TWDTW method. Sample points of different crops were collected to form standard sequence of NDVI for each crop. The TWDTW similarity matching algorithm was used to calculate the similarity distance between each pixel to be classified and the standard sequence of different crops. The smaller the distance was, the higher the similarity was. The similarity was used to determine the crop type of the pixel, and the final classification result was obtained. At the same time, the classification rules of decision tree were established according to the NDVI curve of time series, and the classification result was obtained by manually setting the classification threshold, and compared with that of the TWDTW method. 【Result】 The classification results of the two methods were very consistent. Peppers were the most widely planted and the wheat was mainly distributed in the northern part of the Yanqi Basin and the 21st Division of the Second Agricultural Division. The distributions of tomato and sugar beet were relatively sporadic. Among the results of planting area, pepper had the largest planting area, followed by tomato, wheat and sugar beet. The accuracy of the classification results of the TWDTW and decision tree methods was verified by the field sample points: The overall accuracy of them were 89.58% and 90.97%, respectively, and the kappa index of them were 0.804 and 0.830, respectively. The classification accuracy of the TWDTW method was slightly higher than that of the decision tree method. 【Conclusion】 Compared with the decision tree classification method, the classification accuracy of the TWDTW method was slightly improved, the classification result was more objective and reliable. The algorithm of TWDTW method was not limited by geographical factors and had strong flexibility and applicability. The experimental results showed that using TWDTW algorithm to identify crops based on the GF-1 WFV data set of dense temporal phase could get better classification results, and it had great application and popularization value in agricultural field.

Key words: TWDTW, time series, GF-1, crop identification, decision trees