中国农业科学

• • 上一篇    

最新录用:鸡Wnt3a基因SNPs的筛选及其与皮肤毛囊密度性状关联分析

屠云洁1,姬改革1,章明1,刘一帆1,巨晓军1,单艳菊1,邹剑敏1李华2,陈智武3束婧婷1**   

  1. 1江苏省家禽遗传育种重点实验室,江苏省家禽科学研究所,江苏扬州 225125;2 佛山科技学院,广东佛山5282253广西金陵农牧集团有限公司, 南宁530000
  • 发布日期:2022-06-26

Screening of Wnt3a Gene SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken

TU YunJie1, JI GaiGe1, ZHANG Ming1, LIU YiFan1, JU XiaoJun1, SHAN YanJu1, ZOU JianMin1LI Hua2CHEN ZhiWu3, SHU JingTing 1*  #br# #br#   

  1. 1 Key Laboratory of Poultry Genetics and Breeding of Jiangsu Province , Jiangsu Institute of Poultry Sciences, Jiangsu Yangzhou 2251252 Fushan University, Guangdong Fushan3Guangxi Jinling Agriculture and Animal Husbandry Group Co., Ltd.Guangxi Nanning530000
  • Online:2022-06-26

摘要: 【目的】Wnt信号通路在动物皮肤毛囊的发生发育中具有重要作用,前期研究结果表明Wnt3a可能是影响鸡皮肤毛囊密度性状的重要候选基因。为进一步验证Wnt3a在皮肤毛囊生长发育中的作用,研究以金陵花鸡为研究对象,筛选Wnt3a SNPs,并分析其与毛囊密度性状的相关性,以期找到对皮肤毛囊密度有显著影响的分子标记,培育屠体美观的屠宰型肉鸡的“分子编写育种”提供参考【方法】采PCR扩增直接测序法对Wnt3a 的SNPs位点进行筛查,分析单个SNP标记与皮肤毛囊密度性状的相关性。采用Haploview软件分析这些SNP位点的连锁不平衡LD程度,并分析不同单倍型组合与毛囊密度性状的相关性【结果】共发现14SNP位点,在第2外显子发现1个SNP位点(SNP1),为同义突变;第2内含子发现4个突变位点( SNP2—SNP5),在第3内含子发现9个SNP位点(SNP6—SNP14)。卡方检验表明,第2外显子的1个突变位点(SNP1)和第2内含子的3个突变位点(SNP3—SNP5)的3个位点均处于哈代-温伯格平衡状态(P>0.05),第3内含子的9SNPsSNP6-SNP14)偏离哈代-温伯格平衡(P<0.05)。SNP1—SNP5He均小于0.50PIC均小于0.25,这5SNP位点遗传多样性较低。第3内含子的9个突变位点,SNP6SNP7SNP9位点PIC0.25,其他6个突变位点 0.25PIC0.5,为中度多态。单标记关联分析表明,公、母鸡SNP2位点的AG基因型的毛囊密度显著高于GG基因型(P0.05);母鸡SNP8位点的AAGG基因型的毛囊密度显著高于AG基因型(P0.05),在公鸡中3种基因型的毛囊密度差异不显著。14SNPs连锁不平衡分析表明,SNP3SNP4SNP5的强连锁产生了2种单倍型,H1GAT)频率为0.882H2TCC)频率为0.118SNP6—SNP13之间的连锁产生了5种单倍型,其中H1ACATTATC)H2ACGTCCCA),H3ACGTTCCA),H4GTGCTATA),H5ACGTCCCC),单倍型频率分别为0.4690.2750.1230.1130.014SNP3SNP4SNP5连锁产生的2 种单倍型组合后产生了3单倍型组合,关联分析发现在公、母鸡中3单倍型组合毛囊密度均差异不显著;将 SNP6—SNP13连锁产生5种主要单倍型组合后,公鸡有7组合单倍型组合,毛孔数量差异不显著;母鸡有8种主要单倍型组合,其中H1H1AACCAATTTTAATTCC毛囊密度SNP2和SNP8位点与皮肤毛囊密度显著相关,单倍型组合H1H1AGAA)、H1H2AGAG)为母鸡优势单倍型。【结论】筛选到Wnt3a14SNPs位点,其中SNP2 rs2587721 G)和SNP8rs2555967GA)位点与毛囊密度显著相关,8SNPsSNP6—SNP13)位点处于强连锁不平衡,母鸡H1H1单倍型毛囊密度Wnt3aSNP2SNP8位点的单倍型组合H1H1AGAAH1H2AGAG)SNP6-13连锁产生的H1H1AACCAATTTTAATTCC)单倍型组合与母鸡毛囊密度显著相关,可以为毛囊密度“分子编写育种”提供重要遗传信息


关键词: , Wnt3a, 皮肤毛囊, SNP位点, 连锁不平衡

Abstract: ObjectiveThe Wnt signaling pathway plays an important role in the development of animal skin feather follicles. The results of previous studies indicated that the Wnt3a may be an important candidate gene that had effects on the chicken feather follicle density. In order to further verify the role of Wnt3a in the growth and development of skin feather follicle density, Wnt3a SNPs were screened and their association with feather follicle density will be analyzed in Jinling Hua chicken. It will provide a reference for“breeding by molecular writing of slaughter-type broilers with beautiful carcasses.MethodThe SNPs of Wnt3a gene were screened by PCR amplification and direct sequencing, and the correlation between a single SNP marker and skin feather follicle density traits was analyzed. Haploview software was used to analyze the degree of linkage disequilibrium (LD) of these SNP loci, and the correlation between different haplotype combinations and feather follicle density traits was also analyzed. ResultsA total of 14 SNP sites were found, and one SNP site (SNP1) was found in the second exon, which was a synonymous mutation. Four mutation sites (SNP2-SNP5) were found in the second intron, and 9 SNP sites (SNP6-SNP14) were found in the third intron. The chi-square test showed that one mutation site (SNP1) in the second exon and three mutation sites (SNP3-SNP5) in the second intron were all in the Hardy-Weinberg equilibrium (P >0.05), the 9 mutation sites (SNP6-SNP14) of the third intron deviated from Hardy-Weinberg equilibrium (P<0.05). The expected heterozygosity (He) of SNP1-SNP5 is less than 0.50, and the polymorphic information content (PIC) is less than 0.25. The genetic polymorphisms of these 5 SNP loci are low. The third intron had 9 mutation sites, PIC of SNP6, SNP7, SNP9 sites was less than 0.25, and the other 6 mutation sites 0.25<PIC<0.5, which were moderately polymorphic. Single-marker association analysis showed that the number of skin feather follicle with SNP2 locus of AG genotype in males and females was significantly higher than that of GG genotype (P0.05). The number of skin feather follicles with SNP8 locus of AA and GG genotypes in females was significantly higher than that of the AG genotype (P<0.05). The skin feather follicles density in the three genotypes in males was not significantly different. The linkage disequilibrium analysis of 14 SNPs showed that SNP6-SNP13 and SNP3-SNP5 had a strong linkage disequilibrium, respectively. SNP3, SNP4, and SNP5 produced three haplotype combinations after the combination of the two haplotypes linked by SNP3- SNP5. Association analysis found that the skin feather follicle density of the three haplotype combinations in males and females were not significantly different. After the combination of 5 main haplotypes at SNP6-SNP13 locus, males had 7 haplotype combinations, and the skin feather follicles density was not significant. Females had 8 haplotype combinations, of which H1H1 (AACCAATTTTAATTCC) had the highest skin feather follicles density. SNP2 and SNP8 are significantly correlated with skin feather follicle density, and the haplotype combination H1H1AGAA and H1H2 AGAGare the dominant haplotypes in hens.ConclusionFourteen SNPs of Wnt3a were screened. Among them, individuals with different genotypes at rs2587721 G > A (SNP2) and rs2555967G>A (SNP8) locus have significant differences in feather follicle density. Eight SNPs (SNP6-SNP13) loci are in strong linkage disequilibrium, and the combination of H1H1 had the highest feather follicles density in females. The haplotype combination of SNP2 and SNP8 of Wnt3a H1H (AGAA), H1H2 (AGAG) and SNP6-SNP13 linked to produce the H1H1 AACCAATTTTAATTCChaplotype combination are significantly correlated with feather follicle density in females, which can provide important genetic information forbreeding by molecular writingon chicken skin feather follicle density. 


Key words: chicken,  , Wnt3a,  , skin feather follicle,  , SNP sites,  , linkage disequilibrium