[1] |
CEN K Y, YU X, GAO C C, YANG Y L, TANG X Z, FENG X. Effects of quinoa protein pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel. Food Chemistry, 2022, 394: 133456.
|
[2] |
胡一晨, 赵钢, 秦培友, 成颜芬, 曹亚楠, 邹亮, 任贵兴. 藜麦活性成分研究进展. 作物学报, 2018, 44(11): 1579-1591.
doi: 10.3724/SP.J.1006.2018.01579
|
|
HU Y C, ZHAO G, QIN P Y, CHENG Y F, CAO Y N, ZOU L, REN G X. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agronomica Sinica, 2018, 44(11): 1579-1591. (in Chinese)
|
[3] |
PEREIRA E, ENCINA-ZELADA C, BARROS L, GONZALES- BARRON U, CADAVEZ V, FERREIRA I C F R. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 2019, 280: 110-114.
|
[4] |
AKHARUME F U, ALUKO R E, ADEDEJI A A. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1): 198-224.
doi: 10.1111/1541-4337.12688
pmid: 33393195
|
[5] |
FENG Y Y, LIANG X, ZHAO Z H, KONG B H, XIA X F, CAO C A, ZHANG H W, LIU Q, SUN F D. Mechanisms and effects of different crosslinking degrees on gelling properties and in vitro digestibility of heat-induced microbial transglutaminase-mediated myofibrillar protein gels with or without κ-carrageenan. Food Hydrocolloids, 2024, 152: 109964.
|
[6] |
MENG Y, WEI Z H, XUE C H. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends in Food Science & Technology, 2022, 121: 59-75.
|
[7] |
JO Y J, HUANG W J, CHEN L Y. Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study. Food & Function, 2020, 11(11): 10114-10125.
|
[8] |
YANG Z, DE CAMPO L, GILBERT E P, KNOTT R, CHENG L R, STORER B, LIN X L, LUO L, PATOLE S, HEMAR Y. Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced quinoa protein gels. Food Hydrocolloids, 2022, 124: 107350.
|
[9] |
WANG X Y, CHENG L R, WANG H F, YANG Z. Limited Alcalase hydrolysis improves the thermally-induced gelation of quinoa protein isolate (QPI) dispersions. Current Research in Food Science, 2022, 5: 2061-2069.
doi: 10.1016/j.crfs.2022.10.027
pmid: 36387599
|
[10] |
ZHOU C, QI W, NEIL LEWIS E, CARPENTER J F. Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Analytical Biochemistry, 2015, 472: 7-20.
doi: 10.1016/j.ab.2014.11.016
pmid: 25475399
|
[11] |
WINTERS A L, MINCHIN F R. Modification of the Lowry assay to measure proteins and phenols in covalently bound complexes. Analytical Biochemistry, 2005, 346(1): 43-48.
pmid: 16197913
|
[12] |
LIU Y Q, HUANG Y Y, DENG X Q, LI Z M, LIAN W T, ZHANG G, ZHU Y, ZHU X Q. Effect of enzymatic hydrolysis followed after extrusion pretreatment on the structure and emulsibility of soybean protein. Process Biochemistry, 2022, 116: 173-184.
|
[13] |
HUYST A M R, DELEU L J, LUYCKX T, BUYST D, VAN CAMP J, DELCOUR J A, VAN DER MEEREN P. Colloidal stability of oil-in-water emulsions prepared from hen egg white submitted to dry and/or wet heating to induce amyloid-like fibril formation. Food Hydrocolloids, 2022, 125: 107450.
|
[14] |
LV Y Q, XU L L, SU Y J, CHANG C H, GU L P, YANG Y J, LI J H. Effect of soybean protein isolate and egg white mixture on gelation of chicken myofibrillar proteins under salt /-free conditions. LWT, 2021, 149: 111871.
|
[15] |
ZHANG X Y, ZHANG S, ZHONG M M, QI B K, LI Y. Soy and whey protein isolate mixture/calcium chloride thermally induced emulsion gels: Rheological properties and digestive characteristics. Food Chemistry, 2022, 380: 132212.
|
[16] |
YAN S Z, XU J W, ZHANG S, LI Y. Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. LWT-Food Science and Technology, 2021, 142: 110881.
|
[17] |
BYLER D M, SUSI H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 1986, 25(3): 469-487.
doi: 10.1002/bip.360250307
pmid: 3697478
|
[18] |
LIU C, BHATTARAI M, MIKKONEN K S, HEINONEN M. Effects of enzymatic hydrolysis of fava bean protein isolate by alcalase on the physical and oxidative stability of oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 2019, 67(23): 6625-6632.
doi: 10.1021/acs.jafc.9b00914
pmid: 31117491
|
[19] |
MAHMOUD M I, MALONE W T, CORDLE C T. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 1992, 57(5): 1223-1229.
|
[20] |
PAULSON A T, TUNG M A. Solubility, hydrophobicity and net charge of succinylated canola protein isolate. Journal of Food Science, 1987, 52(6): 1557-1561.
|
[21] |
KUMAR D, CHATLI M K, SINGH R, MEHTA N, KUMAR P. Enzymatic hydrolysis of camel milk casein and its antioxidant properties. Dairy Science & Technology, 2016, 96(3): 391-404.
|
[22] |
JIANG L Z, WANG J, LI Y, WANG Z J, LIANG J, WANG R, CHEN Y, MA W J, QI B K, ZHANG M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 2014, 62: 595-601.
|
[23] |
CUI C, ZHAO M M, YUAN B E, ZHANG Y H, REN J Y. Effect of pH and pepsin limited hydrolysis on the structure and functional properties of soybean protein hydrolysates. Journal of Food Science, 2013, 78(12): C1871-C1877.
|
[24] |
GANESH S, NINGTYAS D W, PRAKASH S. Investigating the functionality of enzymatically (transglutaminase and alcalase) treated almond protein isolate. Food Bioscience, 2022, 49: 101914.
|
[25] |
ADAMCIK J, JUNG J M, FLAKOWSKI J, DE LOS RIOS P, DIETLER G, MEZZENGA R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotechnology, 2010, 5(6): 423-428.
doi: 10.1038/nnano.2010.59
pmid: 20383125
|
[26] |
ADAMCIK J, MEZZENGA R. Adjustable twisting periodic pitch of amyloid fibrils. Soft Matter, 2011, 7(11): 5437-5443.
|
[27] |
操义平, 方亚鹏. 淀粉样蛋白纤维作为食品配料的研究进展与思考. 中国食品添加剂, 2023, 34(1): 46-54.
|
|
CAO Y P, FANG Y P. Research progress on amyloid fibrils as food ingredients. China Food Additives, 2023, 34(1): 46-54. (in Chinese)
|
[28] |
|
|
FENG X, WU C S, YANG Y L, FU L X, CHEN L W, TANG X Z. Effects of different salt ions on the gel properties and molecular interactions of quinoa protein. Scientia Agricultura Sinica, 2023, 56(21): 4318-4329. doi: 10.3864/j.issn.0578-1752.2023.21.014. (in Chinese)
|
[29] |
KHALESI H, SUN C X, HE J, LU W, FANG Y P. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Food Research International, 2021, 140: 109856.
|
[30] |
LUO L, ZHANG R J, PALMER J, HEMAR Y, YANG Z. Impact of high hydrostatic pressure on the gelation behavior and microstructure of quinoa protein isolate dispersions. ACS Food Science & Technology, 2021, 1(11): 2144-2151.
|
[31] |
JO Y J, CHEN L Y. Gelation behavior of lentil protein aggregates induced by sequential combination of glucono-δ-lactone and transglutaminase. Food Structure, 2023, 36: 100312.
|
[32] |
VOGELSANG-O′DWYER M, SAHIN A W, ARENDT E K, ZANNINI E. Enzymatic hydrolysis of pulse proteins as a tool to improve techno-functional properties. Foods, 2022, 11(9): 1307.
|
[33] |
FU L X, FENG X, WU C S, WEI J F, CHEN L, YU X, LIU Q, TANG X Z. Bromelain hydrolysis and CaCl2 coordination promote the fibrillation of quinoa protein at pH 7. Food Hydrocolloids, 2025, 159: 110659.
|
[34] |
ZHENG L, WANG Z J, KONG Y, MA Z L, WU C L, REGENSTEIN J M, TENG F, LI Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocolloids, 2021, 110: 106115.
|