[1] HOASHI T, SATO S, YAMAGUCHI Y, PASSERON T, TAMAKI K, HEARING V J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2010, 24(5): 1616-1629.
[2] OLIVARES C, SOLANO F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell & Melanoma Research, 2009, 22(6):750-760.
[3] WETERMAN M A, AJUBI N, VAN DINTER IM, DEGEN W G, VAN MUIJEN G N, RUITTER D J, BLOEMERS H P. nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. International Journal of Cancer, 1995, 60(1):73-81.
[4] SHIKANO S, BONKOBARA M, ZUKAS P K, ARIIZUMI K. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. Journal of Biological Chemistry, 2001, 276(11):8125-8134.
[5] SAFADI F F, XU J, SMOCK S L, RICO M C, OWEN T A, POPOFF S N. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. Journal of Cellular Biochemistry, 2002, 84(1):12-26.
[6] BANDARI P S, QIAN J, YEHIA G, JOSHI D D, MALOOF P B, POTIAN J, OH H S, GASCON P, HARRISON J S, RAMESHWAR P. Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. Regulatory Peptides, 2003, 111(1-3):169-178.
[7] KUAN C T, WAKIYA K, DOWELL J M, HERNDON J E, REARDON D A, GRANER M W, RIGGINS G J, WIKSTRAND C J, BIGNER D D. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 2006, 12(7 Pt 1): 1970-1982.
[8] TOMIHARI M, HWANG S H, CHUNG J S, CRUZ P D, ARIIZUMI K. Gpnmb is a melanosome-associated glycoprotein that contributes to melanocyte/keratinocyte adhesion in a RGD-dependent fashion. Experimental Dermatology, 2009, 18(7):586-595.
[9] THEOS A C, WATT B, HARPER D C, JANCZURA K J, THEOS S C, HERMAN K E, MARKS M S. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell & Melanoma Research, 2013, 26(4):470-486.
[10] SELIM A A. Osteoactivin bioinformatic analysis: prediction of novel functions, structural features, and modes of action. Medical Science Monitor International Medical Journal of Experimental & Clinical Research, 2009, 15(15): 19-33.
[11] AKSAN I, GODING C. Targeting the microphthalmia basic helix- loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo. Molecular & Cellular Biology, 1999, 18(12):6930-6938.
[12] DONG F, YOSHIAKI T, VIJAYASARADHI S. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF. Nucleic Acids Research, 2002, 30(14):3096-3106.
[13] TURQUE N, DENHEZ F, MARTIN P, PLANQUE N, BAILLY M, BEGUE A, STEHELIN D, SAULE S. Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO Journal, 1996, 15(13):3338-3350.
[14] DU J, MILLER A J, WIDLUND H R, HORSTMANN M A, RAMASWAMY S, FISHER D E. MLANA/MART1 and SILV/ PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. American Journal of Pathology, 2003, 163(1):333-343.
[15] DU J, FISHER D E. Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. Journal of Biological Chemistry, 2002, 277(1):402-406.
[16] CHELI Y, OHANNA M, BALLOTTI R, BERTOLOTTO C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell & Melanoma Research, 2010, 23(1):27-40.
[17] ANDERSON M G, SMITH R S, HAWES N L, ZABALETA A, CHANG B, WIGGS J L, JOHN S W. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature Genetics, 2001, 30(1):81-85.
[18] RIPOLL V M, MEADOWS N A, RAGGATT L J, CHANG M K, PETTIT A R, CASSADY A I, HUME D A. Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene, 2008, 413(1/2):32-41.
[19] ZHANG P, LIU W, ZHU C, YUAN X, LI D, GU W, MA H, XIE X, GAO T. Silencing of GPNMB by siRNA inhibits the formation of melanosomes in melanocytes in a MITF-independent fashion. PLoS One, 2012, 7(8):e42955-e42955.
[20] GUTKNECHT M, GEIGER J, JOAS S, DÖRFEL D, SALIH H R, MÜLLER M R, GRÜNEBACH F, RITTING S M. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Communication and Signaling, 2015, 13(1):1-15.
[21] YOKO O, KAZUHIRO T, MASAFUMI T, MASAMITSU S, HIDEAKI H. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na(+)/K(+)-ATPase. Scientific Reports, 2016(6): 23241.
[22] HARASZTI T, TRANTOW C M, HEDBERG-BUENZ A, GRUNZE M, ANDERSON M G. Spectral analysis by XANES reveals that GPNMB influences the chemical composition of intact melanosomes. Pigment Cell & Melanoma Research, 2011, 24(1):187-196.
[23] HEARING V J. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. Journal of Dermatological Science, 2005, 37(1):3-14.
[24] SEIJI M, FITZPATRICK T B, SIMPSON R T, BIRBECK M S. Chemical composition and terminology of specialized organelles (melanosomes and melanin granules) in mammalian melanocytes. Nature, 1963, 197(487):1082-1084.
[25] SHABANOWITZ J, HEARING V J, HUNT D F, APPELLA E. Proteomic analysis of early melanosomes: identification of novel melanosomal proteins. Journal of Proteome Research, 2003, 2(1): 69-79.
[26] CORTESE K, GIORDANO F, SURACE E M, VENTURI C, BALLABIO A, TACCHETTI C, MARIGO V. The ocular albinism type 1 (OA1) gene controls melanosome maturation and size. Investigative Ophthalmology & Visual Science, 2005, 46(12): 4358-4364.
[27] KUSHIMOTO T, BASRUR V, VALENCIA J, MATSUNAGA J, VIEIRA W D, FERRANS V J, MULLER J, APPELLA E, HEARING V J. A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proceedings of the National Academy of Sciences of the USA, 2001, 98(19):10698-10703.
[28] THEOS A C, TENZA D, MARTINA J A, HURBAIN I, PEDEN A A, SVIDERSKAYA E V, STEWART A, ROBINSON M S, BENNETT D C, CUTLER D F, BONIFACINO J S, MARKS M S, RAPOSO G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Molecular Biology of the Cell, 2005, 16(11):5356-5372.
[29] CHI A, VALENCIA J C, HU Z Z, WATABE H, YAMAGUCHI H, MANGINI N J, HUANG H, CANFIELD V A, CHENG K C, YANG F, ABE R, YAMAGISHI S, SHABANOWITZ J, HEARING V J, WU C, APPELLA E, HUNT D F. Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. Journal of Proteome Research, 2006, 5(11):3135-3144.
[30] LOFTUS S K, ANTONELLIS A, MATERA I, RENAUD G, BAXTER L L, REID D, WOLFSBERG T G, CHEN Y D, WANG C W. Gpnmb, is a melanoblast-expressed, MITF-dependent gene. Pigment Cell & Melanoma Research, 2009, 22(1):99-110. |