期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.)
Everlyne M’mbone MULEKE, WANG Yan, ZHANG Wan-ting, XU Liang, YING Jia-li, Bernard K. KARANJA, ZHU Xian-wen, FAN Lian-xue, Zarwali AHMADZAI, LIU Li-wang
Journal of Integrative Agriculture    2021, 20 (1): 120-131.   DOI: 10.1016/S2095-3119(20)63308-1
摘要200)      PDF    收藏

萝卜是一种重要的十字花科根菜类蔬菜作物,在其有色的根中有高水平的花青素累积。MYB转录因子(TFs)在植物发育和花青素代谢中起着重要作用,并且PAP1/2能促进花青素生物合成基因的表达。本研究在萝卜基因组中共鉴定出187个RsMYB基因,并将其分为32个亚家族;其中159个RsMYB基因被定位在9条染色体上。在4个不同颜色的萝卜品种肉质根发育阶段,14个RsMYB基因表现出差异的表达模式。一些RsMYB基因在成熟期有色根组织中高表达,这些基因包括RsMYB41,RsMYB117以及与PAP1/2同源的RsMYB132在‘NAU-YH’的红色根皮中高表达,RsMYB65RsMYB159基因在‘NAU-YZH’的紫色根皮中高表达,表明这些RsMYB基因可能促进萝卜肉质根花青素积累。研究结果为进一步研究萝卜RsMYB因功能特性提供有价值的信息,并有助于阐明萝卜花青素生成的分子机制


参考文献 | 相关文章 | 多维度评价
2. Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)
XU Yuan-yuan, WANG Jing, NIE Shan-shan, HUANG Dan-qiong, WANG Yan, XU Liang, WAN
Journal of Integrative Agriculture    2016, 15 (4): 763-774.   DOI: 10.1016/S2095-3119(15)61295-3
摘要1272)      PDF    收藏
Both bolting and flowering times influence taproot and seed production in radish. FLOWERING LOCUS C (FLC) plays a key role in plant flowering by functioning as a repressor. Two genomic DNA sequences, a 3 046-bp from an early- and a 2 959-bp from a late-bolting radish line were isolated and named as RsFLC1 and RsFLC2, respectively, for they share approximately 87.03% sequence identity to the FLC cDNA sequences. The genomic DNA sequences, 1 466-bp and 1 744-bp, flanking the 5´-regions of RsFLC1 and RsFLC2, respectively, were characterized. Since both of them harbor the basic promoter elements, the TATA box and CAAT box, they were designated as PRsFLC1 and PRsFLC2. The transcription start site (TSS) was identified at 424 and 336 bp upstream of the start codon in PRsFLC1 and PRsFLC2, respectively. cis-regulatory elements including CGTCA (MeJA-responsive) and ABRE (abscisic acid-responsive) motifs were found in both promoters, while some cis-regulatory elements including TCA element and GARE-motif were present only in PRsFLC1. These sequence differences lead to the diversity of promoter core elements, which could partially result in the difference of bolting and flowering time in radish line NauDY13 (early-bolting) and Naulu127 (late-bolting). Furthermore, to investigate the activity of these promoters, a series of 5´-deletion fragment-GUS fusions were constructed and transformed into tobacco. GUS activity was detected in PRsFLC1-(1 to 4)-GUS-PS1aG-3 and PRsFLC2-(1 to 4)-GUS-PS1aG-3 transgenic tobacco leaf discs, and this activity progressively decreased from PRsFLC-1-GUS-PS1aG-3 to PRsFLC-5-GUS-PS1aG-3. Deletion analysis indicated that the cis-regulatory elements located at –395 bp to +1 bp may be critical for specifying RsFLC gene transcription.
参考文献 | 相关文章 | 多维度评价
3. Secondary metabolites of rice sheath blight pathogen Rhizoctonia solani Kühn and their biological activities
XU Liang, WANG Xiao-han, LUO Rui-ya, LU Shi-qiong, GUO Ze-jian, WANG Ming-an, LIU Yang, ZHOU Li-gang
Journal of Integrative Agriculture    2015, 14 (1): 80-87.   DOI: 10.1016/S2095-3119(14)60905-9
摘要2057)      PDF    收藏
Eight compounds were isolated from the fermentation cultures of rice sheath blight pathogen Rhizoctonia solani Kühn. They were identified as ergosterol (1), 6β-hydroxysitostenone (2), sitostenone (3), m-hydroxyphenylacetic acid (4), methyl m-hydroxyphenylacetate (5), m-hydroxymethylphenyl pentanoate (6), (Z)-3-methylpent-2-en-1,5-dioic acid (7) and 3-methoxyfuran-2-carboxylic acid (8) by means of physicochemical and spectroscopic analysis. Among them, 2, 3, 5–8 were isolated from R. solani for the first time. All the compounds were evaluated for their biological activities. 4–6 and 8 showed their inhibitory activities on the radical and germ elongation of rice seeds. 1, 4 and 7 showed moderate antibacterial activity to some bacteria. 4, 7 and 8 exhibited weak inhibitory activities on spore germination of Magnaporthe oryzae. 8 showed moderate antioxidant activity with the 1,1-diphenyl-2-picryhydrazyl (DPPH) and β-carotene-linoleic acid assays. This is the first time to reveal compounds 5, 6 and 8 from rice sheath blight pathogen R. solani to have in vitro phytotoxic activity.
参考文献 | 相关文章 | 多维度评价
4. Molecular Characterization and Expression Profiles of Myrosinase Gene (RsMyr2) in Radish (Raphanus sativus L.)
PAN Yan1, XU Yuan-yuan1, ZHU Xian-wen2, LIU Zhe1, GONG Yi-qin1, XU Liang1, GONG Mao-yong1, and LIU Li-wang1
Journal of Integrative Agriculture    2014, 13 (9): 1877-1888.   DOI: 10.1016/S2095-3119(13)60644-9
摘要1298)      PDF    收藏
Myrosinase is a defense-related enzyme and is capable of hydrolyzing glucosinolates into a variety of compounds, some of which are toxic to pathogens and herbivores. Many studies revealed that a number of important vegetables or oil crops contain the myrosinase-glucosinolate system. However, the related promoter and genomic DNA sequences as well as expression profiles of myrosinase gene remain largely unexplored in radish (Raphanus sativus). In this study, the 2 798 bp genomic DNA sequence, designated as RsMyr2, was isolated and analyzed in radish. The RsMyr2 consisting of 12 exons and 11 introns reflected the common gene structure of myrosinases. Using the genomic DNA walking approach, the 5´-flanking region upstream of RsMyr2 with length of 1 711 bp was successfully isolated. PLACE and PlantCARE analyses revealed that this upstream region could be the promoter of RsMyr2, which contained several basic cis-regulatory elements including TATA-box, CAAT-box and regulatory motifs responsive to defense and stresses. Furthermore, recombinant pET-RsMyr2 protein separated by SDS-PAGE was identified as myrosinase with mass spectrometry. Real-time PCR analysis showed differential expression profiles of RsMyr2 in leaf, stem and root at different developmental stages (e.g., higher expression in leaf at cotyledon stage and lower in flesh root at mature stage). Additionally, the RsMyr2 gene exhibited up-regulated expression when treated with abscisic acid (ABA), methyl jasmonate (MeJA) and hydrogen peroxide (H2O2), whereas it was down-regulated by wounding (WO) treatment. The findings indicated that the expression of RsMyr2 gene was differentially regulated by these stress treatments. These results could provide new insight into elucidating the molecular characterization and biological function of myrosinase in radish.
参考文献 | 相关文章 | 多维度评价
5. Identification and Molecular Mapping of the RsDmR Locus Conferring Resistance to Downy Mildew at Seedling Stage in Radish (Raphanus sativus L.)
XU Liang, JIANG Qiu-wei, WU Jian, WANG Yan, GONG Yi-qin, WANG Xian-li, Limera Cecilia , LIU Li-wang
Journal of Integrative Agriculture    2014, 13 (11): 2362-2369.   DOI: 10.1016/S2095-3119(14)60792-9
摘要1245)      PDF    收藏
Downy mildew (DM), caused by the fungus Peronospora parasitica, is a destructive disease of radish (Raphanus sativus L.) worldwide. Host resistance has been considered as an attractive and environmentally friendly approach to control the disease. However, the genetic mechanisms of resistance in radish to the pathogen remain unknown. To determine the inheritance of resistance to DM, F1, F2 and BC1F1 populations derived from reciprocal crosses between a resistant line NAU-dhp08 and a susceptible line NAU-qtbjq-06 were evaluated for their responses to DM at seedling stage. All F1 hybrid plants showed high resistance to DM and maternal effect was not detected. The segregation for resistant to susceptible individuals statistically fitted a 3:1 ratio in two F2 populations (F2(SR) and F2(RS)), and 1:1 ratio in two BC1F1 populations, indicating that resistance to DM at seedling stage in radish was controlled by a single dominant locus designated as RsDmR. A total of 1 972 primer pairs (1036 SRAP, 628 RAPD, 126 RGA, 110 EST-SSR and 72 ISSR) were screened, and 36 were polymorphic between the resistant and susceptible bulks, and consequently used for genotyping individuals in the F2 population. Three markers (Em9/ga24370, NAUISSR826700 and Me7/em10400) linked to the RsDmR locus within a 10.0 cM distance were identified using bulked segregant analysis (BSA). The SRAP marker Em9/ga24370 was the most tightly linked one with a distance of 2.3 cM to RsDmR. These markers tightly linked to the RsDmR locus would facilitate marker-assisted selection and resistance gene pyramiding in radish breeding programs.
参考文献 | 相关文章 | 多维度评价