近年来,碳青霉烯耐药肠杆菌成为了一个威胁临床抗生素治疗的问题。肠杆菌属细菌作为腐生多宿主细菌,在环境、畜禽和人之间广泛存在,调查畜禽养殖生产过程中的碳青霉烯耐药肠杆菌属细菌,对预防和遏制肠杆菌属细菌碳青霉烯类耐药具有重要意义。
本研究从中国某养鸭场的鸭肠道与环境样本中,分离出携带blaIMI的碳青霉烯类和黏菌素耐药肠杆菌属细菌。药敏试验显示,四株blaIMI阳性肠杆菌属细菌分离株对碳青霉烯和黏菌素具有耐药性。PCR和Sanger测序证明了在不同ST型的菌株中检测到了三种blaIMI亚型。全基因组测序证明blaIMI基因存在于这些菌株的染色体或质粒中。接合转移实验证明了携带blaIMI的质粒具有水平传播的能力。我们运用比较分析手段对其分子进化特征进行了研究,发现两株blaIMI-16阳性阿氏肠杆菌之间具有高度相似的基因环境,但有着较远的亲缘关系,这提示了blaIMI-16水平传播的可能。此外,携带blaIMI-16的质粒是IncFⅠⅠ(Yp)质粒,该型质粒能够使宿主菌具备生长的竞争性优势。在该质粒上,blaIMI-16的上下游鉴定出大量的可移动遗传元件(MGEs)序列,以IS1081、Tn903和ISE居多。本研究中的blaIMI阳性肠杆菌属细菌中还携带有毒力基因,有助于增强菌株致病性。
综上所述,我们发现了在中国某鸭场内的肠杆菌属细菌中,blaIMI由IncFⅠⅠ(Yp)质粒携带并促进其传播,从而导致了细菌碳青霉烯耐药性的传播。可移动遗传元件在水平传播中发挥着重要作用。对于blaIMI基因的研究较少,此前,从未在中国大陆的养殖源细菌中发现,也未见有blaIMI-16基因在中国大陆被鉴定的报道。我们的研究为不同亚型blaIMI基因在中国的传播提供了证据,并为研究blaIMI阳性耐药肠杆菌属细菌提供了参考数据。本研究强调:我们仍需要定期监测动物饲养过程中的blaIMI阳性肠杆菌属细菌,以预防及遏制日益严重的碳青霉烯类药物耐药性传播的威胁。
目的:马链球菌兽疫亚种(Streptococcus equi subsp. zooepidemicus,SEZ)是一种人畜共患病病原,在我国主要引起猪链球菌病。本实验室前期研究发现了一株源于强毒株SEZ ATCC35246自然变异的弱毒株M35246。M35246表现为一个连续25基因的丢失和covS基因的功能丧失性突变。这是第一次发现在SEZ中的涉及covS的自然变异。涉及covS的自然变异是增强化脓链球菌致病性的关键,所以需要确定covS的自然变异是否对SEZ毒力具有相同的影响。本工作的目的是研究CovS在SEZ毒力形成中的作用,有助于研究SEZ的致病机制,特别是涉及SEZ毒力的转录调控机制。
方法:本研究通过转录组测序和DNA测序,确定了M35246中covS的碱基突变形式。在野生强毒株ATCC35246的基础上分别构建了25基因敲除株ΔPI和covS突变株McovS及对应的互补株。随后,本研究检测了ATCC35246、M35246、M35246 CcovS、McovS、CMcovS、ΔPI的生长能力、对上皮细胞HEp-2的黏附能力、对巨噬细胞Raw264.7的抗吞噬能力以及菌体荚膜含量;测定了ATCC35246、M35246、McovS、ΔPI对24种抗生素的敏感性、对小鼠的半数致死量和攻毒后的菌体脏器分布;进行了ATCC35246、M35246、McovS的比较转录组学分析。
结果:M35246中covS的变异导致其移码突变并造成提前翻译终止,且在基因N端形成终止子结构,遏制其转录。与ATCC35246相比,M35246和McovS的荚膜含量和抗吞噬能力显著降低。McovS对β-内酰胺类、氨基糖苷类、大环内酯类和林可酰胺类药物的敏感性显著高于ATCC35246。与ATCC35246相比,M35246、McovS和ΔPI对小鼠的半数致死量分别增加了105、105和5倍。用约2000倍ATCC35246半数致死量的剂量攻毒48小时后,M35246和McovS均不能从小鼠体内分离。转录组分析表明,McovS和ATCC35246之间存在668个显著差异表达的基因。相对于ATCC35246,McovS中与抗吞噬、荚膜形成、致病性和抗生素抗性有关的许多毒力因子编码基因和合成代谢相关基因显著下调。
结论:本文系统研究了SEZ CovS在细菌抗吞噬作用、荚膜形成、致病性、抗生素耐药性以及对各种重要毒力因子和关键代谢系统转录调控的作用。此外,转录组分析揭示了CovS在抗吞噬作用、荚膜形成、致病性和抗生素耐药性方面的调节机制。
创新性:该工作系统研究了参与SEZ致病性和抗生素耐药的调控因子,表明二元调控系统在不同细菌中调控的多样性,揭示CovS在SEZ毒力形成中起着至关重要的作用。
亚油酸是一种必需的多不饱和脂肪酸,不能由人类或动物自身合成,只能从外部获得。亚油酸的含量对肉的质量和风味有影响,并间接影响消费者的偏好。然而,影响亚油酸在生物体内沉积的分子机制并不清楚。因为对于亚油酸沉积的分子机制尚不明晰,为了研究影响亚油酸含量的主要效应基因,本研究旨在通过转录组测序(RNA-Seq)和加权基因共表达网络分析(WGCNA)来筛选慢型型黄羽鸡的关键基因。我们为了筛选与慢型黄羽肉鸡中亚油酸含量相关的候选基因,在126天上市日龄时宰杀了399只天农麻鸡,测量了胸肌中的脂肪酸含量,并收集胸肌组织进行转录组测序。通过将转录组测序结果与WGCNA的表型相结合,来筛选候选基因。并对在相关度最高的模块中显著相关的基因进行了KEGG富集分析。在对399个胸肌组织进行基于RNA-Seq的质量控制后,共获得13,310个基因。使用这些基因进行了WGCNA,共得到26个模块,其中有8个与亚油酸含量高度相关的模块。根据|GS|>0.2和|MM|>0.8的标准进行筛选,得到四个关键基因,即MDH2、ATP5B、RPL7A和PDGFRA。KEGG富集后结果显示,目标模块内的基因主要富集在代谢途径中。本研究通过大样本量的转录组分析,发现代谢途径在天农麻鸡亚油酸含量的调控中起着重要作用,并筛选出MDH2、ATP5B、RPL7A和PDGFRA作为影响亚油酸含量的重要候选基因。本研究结果为选择分子标记和全面了解影响肌肉中亚油酸含量的分子机制提供了理论依据,为慢速型黄羽肉鸡的育种提供了重要参考。
本研究首先通过对产蛋前期(15周龄)和产蛋高峰期(30周龄)卢氏绿壳蛋鸡(LS)下丘脑比较转录组分析,鉴定差异表达基因(DEGs);然后利用Gene Ontology (GO)富集分析,筛选DEGs中参与繁殖调控生物学过程(BP)的基因;进而通过蛋白质互作网络(PPI)分析,筛选调控繁殖过程的潜在核心候选基因(PCCGs)。在此基础上,利用qRT-PCR对PCCGs在两个地方鸡品种产蛋前期(15周龄)和产蛋高峰期(30周龄)下丘脑中表达水平的变化趋势进行分析,进而对基因表达量与30周龄产蛋数(EN30w)和血液繁殖激素水平的相关性分析,筛选影响地方鸡产蛋性能的关键基因;最后,从这些关键基因中筛选单核苷酸多态性位点(SNPs),并与不同时期产蛋数进行关联分析,进一步确定这些关键基因中影响产蛋的潜在SNP位点。产蛋前期和产蛋高峰期LS下丘脑比较转录组分析共鉴定出518个DEGs。对这些DEGs功能富集分析发现,10个BP中包含的64个DEGs可能通过神经内分泌过程参与鸡繁殖调控。进一步的PPI分析发现,64个DEGs中有16个高连接度(Degree≥12)的基因,即PCCGs。对这16个PCCGs在LS和固始鸡(GS)产蛋前期和产蛋高峰期下丘脑中的表达模式检测发现,其中的11个PCCGs在两品种两个时期下丘脑的表达水平差异显著(P<0.05),且变化趋势相同。在上述11个基因中,有8个基因的表达量与EN30w和血清生殖激素浓度呈显著相关(P<0.05)。8个基因中筛选的SNP位点与产蛋性状的关联分析表明,这8个基因与不同阶段的产蛋量存在显著相关(P<0.05),是调控地方鸡产蛋性能的关键基因。本研究鉴定出参与地方鸡产蛋调控的8个关键基因,包括CNR1、AP2M1、NRXN1、ANXA5、PENK、SLC1A2、SNAP25和TRH。这些发现为进一步理解鸡产蛋性能调控机制提供了新见解,并为地方鸡繁殖性能选育提供了可能的分子标记。