蔗糖磷酸合成酶(SPS)是蔗糖合成途径中的限速酶,与磷酸蔗糖磷酸酶(SPP)形成复合体共同催化合成蔗糖,在植物生长发育过程中提供能量并在果实品质提升方面发挥着重要作用。目前,关于苹果SPS基因家族的进化模式及系统性分析的研究较少。本研究从苹果基因组GDDH13 v1.1中鉴定了7个MdSPS基因和4个MdSPP基因,并分析了其基因结构、基因启动子顺式元件、蛋白保守基序、亚细胞定位和生理生化特性。染色体定位和基因组复制分析表明,全基因组复制(WGD)和片段复制是MdSPS基因家族进化的主要方式,MdSPS基因对的Ka/Ks比值分析指出该家族成员在驯化过程中经历了较强的纯化选择。根据系统发育关系将SPS基因划分为3个亚家族,并观察到基因亚家族间古老的基因复制事件和差异显著的进化速率。此外,根据‘金冠’、‘富士’、‘秦冠’和‘蜜脆’四个苹果品种果实发育过程中可溶性糖含量与SPS家族基因表达水平的相关性,鉴定了一个蔗糖积累相关的关键基因MdSPSA2.3。随后通过病毒诱导MdSPSA2.3基因沉默证实了该基因在苹果果实蔗糖积累中的重要功能。本研究为更好地阐明MdSPS基因在苹果果实发育过程中的生物学功能奠定了理论基础。
本研究评估了影响富平楸子再生及遗传转化体系的因素,发现富平楸子最佳再生体系为使用叶片为外植体,对叶片进行横切,近轴面贴近包含有MS、30 g L-1蔗糖、8 g L-1琼脂、5 mg L-1 6-BA、2 mg L-1 TDZ 和1 mg L-1 NAA,pH为5.8的培养基上暗培养三周后见光培养,最佳遗传转化体系为在根癌农杆菌重悬液中侵染8min,然后进行4天共培养及3天延迟培养,并且使用150 mg L-1头孢噻肟和15 mg L-1卡那霉素作为筛选压。本研究建立了一套有效的富平楸子再生及遗传转化体系,通过此体系可快速获得富平楸子转基因材料,对苹果生物学研究具有重要意义。
肌醇及其衍生物在调节植物非生物逆境耐受性过程中发挥着重要作用。肌醇-1-磷酸合成酶MIPS(myo-inositol-1-phosphate synthase)是肌醇生物合成限速酶,本研究发现,在苹果植株中过表达MdMIPS1基因不仅能提高肌醇生物合成,而且还能提高植株耐旱性。研究表明,肌醇可能通过提高渗透保护剂(如葡萄糖、蔗糖和脯氨酸)的积累和改善活性氧清除相关抗氧化酶活性,提高苹果干旱耐受性。此外,在模拟黄土高原土壤环境的长期中度水分亏缺条件下,MdMIPS1过表达苹果植株表现为水分利用效率显著提高,这可能主要与肌醇生物合成增加协同调节植株渗透平衡和气孔孔径密切相关。综上所述,本研究揭示了苹果MdMIPS1介导的肌醇生物合成在植株耐旱性和水分利用效率调控过程中的积极作用。
多巴胺是一种儿茶酚胺和一种抗氧化剂,在应对逆境时起作用,它与植物激素相互作用以介导植物发育。目前,关于苹果中多巴胺功能的研究较少。本研究开发了一种用于分析苹果种质中的多巴胺测定方法,以阐明多巴胺在苹果树的组织分布、发育变化、昼夜变化和逆境响应。首先,对所提出的方法进行了验证,定量的线性范围在0.1-20 ng mL-1范围内稳定,仪器、日间精密度和样品重复性相对标准偏差分别为1.024%、5.607%和7.237%,加标回收率大于100%,表明该方法的可行性及其适用于快速分析苹果属种质中的多巴胺。接下来,测量了322个苹果组织中的多巴胺含量。结果表明,苹果的多巴胺水平较低,叶片中多巴胺的平均含量高于果皮和果肉。多巴胺在栽培品种和野生种质中向右偏。最后,分析了组织特异性、发育变化、昼夜变化和对逆境的响应。在栽培品种‘皮诺娃’(Malus domestica)中,多巴胺含量在叶芽中最高,在果肉中最低。叶片和果肉中多巴胺含量随着栽培品种‘凉香’(Malus domestica)的生长发育而降低。与对照相比,干旱或盐胁迫后苹果叶片的多巴胺含量更高。在本研究中,建立了一种基于HPLC-MS的苹果多巴胺检测方法,并证明是一种稳健的方法。本研究为未来阐明苹果树中多巴胺的组织分布、发育变化、昼夜变化和逆境响应提供了一个框架。
生长素(吲哚-3-乙酸,IAA)对调节植物碳水化合物水平和生长具有较大的影响,但是它调节植物体内糖分水平的机制却很少受到关注。本研究中,我们发现外源IAA主要通过调节MdSUSY1、MdFRK2、MdHxK1和MdSDH2的转录水平进而改变茎尖中果糖(Fru)、葡萄糖(Glc)和蔗糖(Suc)浓度。此外,我们利用五年生的“Royal Gala”苹果树进一步验证这些基因在调控库强方面的主要作用。结果表明,MdSUSY1、MdFRK2、MdHxK1/3和MdSDH2可能是库强调节的主要贡献基因。综上所述,这些结果为碳水化合物代谢机制的调控提供了新的视角,这将有助于调节库强和产量。
在干旱胁迫下,植物的液压网络面临数项挑战,而导水率是液压网络对干旱压力响应的主要指标之一。本文回顾了我们对直接影响水力传导率的因素及其测量方法的理解,简要介绍了植物液压网络对干旱胁迫的响应的两个主要节点:植物水通道蛋白(AQPs)和维管,并讨论了如何测量液压网络中不同部分的导水率。方法:测量导水率的方法有蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法。其中EFM基于压力泵定量分析蒸腾量(E)和叶水势,需要足够高的蒸腾速率来解决压力弹的驱动梯度;HPFM基于仪器中压缩空气提供的高压下流入叶片的水质量的测量,当从叶柄流入叶片、从气孔流出的水分达到稳定状态时,可以计算出叶片的电导率,但一次只能检测一个叶子,大约需要20到30分钟才能达到稳定的流。而真空泵法是一种改进的HPFM,首先将叶子切下放入保温瓶中,叶柄与提供缓冲溶液的试管连接。真空泵抽出保温瓶的空气,并提供亚大气压以驱动缓冲液流入叶片,然后,可以通过不同压力下进入叶片的缓冲流率的回归斜率来测量叶片的电导率。结果:植物水网对干旱胁迫响应的两个主要节点,其中植物水通道蛋白(AQPs)节点是一类跨膜蛋白,由6个跨膜的外螺旋和5个环组成,形成了一个高度特殊的过滤器,只允许水通过。在干旱胁迫下,脱落酸(ABA)在木质部和其他植物组织中迅速积累,而大多数AQPs的表达随着ABA的积累而降低,根和叶中AQPs对ABA的响应不同,这对植物适应干旱胁迫具有重要意义。AQPs的活性不仅显著影响“把关”细胞的水分吸收和外质运输,同时在气孔运动中也起着重要作用。而维管节点是水从根到芽的运输工具,同时维管的特性也决定了植物的轴向水力传导性(Tombesi et al. 2010),而维管栓塞是导致植物脱水死亡的重要原因。目前测量植物导水率主要有蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法这三种,其中高压流量计的应用最为广泛,但均会对植物造成损伤且检测耗时。其中EFM类似于体内的蒸腾通量,但需要足够高的蒸腾速率来解决压力弹的驱动梯度;与EFM不同,HPFM可以用于测量生长和膨胀叶片的电导率。当叶片不能充分蒸发时,HPFM方法也允许在光和温度不足的条件下测量电导率;而真空泵法是一种改进的HPFM法,这种方法对于每个样品大约需要2小时,并且亚大气压不足以模拟一个可以驱动水从叶片中流出的力(Flexas et al. 2013)。结论:高通量植物表型越来越多地应用于植物研究 (Gehan and Kellogg 2017; Marko et al. 2018; Mir et al. 2019),因此开发用于测量导水率的高通量技术将对未来的研究极为有用。但是由于导水率受许多因素的影响,因此确保相关因素保持一周甚至更长时间内的稳定是一项重大挑战。目前蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法是检测导水率三种主要的方法,但均会对植物造成损伤且耗时,因此目前急需更先进的方法来更快、更容易和更精确地测量导水率。创新点:本文简要介绍了植物水网对干旱胁迫响应的两个主要节点,植物水通道蛋白(AQPs)和维管,同时介绍了蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法这三种检测植物导水率的原理及特点。进一步阐述了目前急需开发更先进的高通量技术来更快、更容易和更精确地测量导水率,这将对未来植物表型的研究意义重大。
己糖激酶(HXK)是糖酵解途径中第一个不可逆的催化酶,不仅为植物的生长和发育提供能量,而且还作为响应环境变化的信号分子。但是,HXK基因家族在苹果中的进化模式仍然未知。本研究中,在苹果(Malus×domestica)基因组GDDH13 v1.1中共鉴定出9个HXKs基因,分析了MdHXKs基因的生理和生化特性,外显子-内含子结构,保守基序和顺式元件,亚细胞定位预测结果表明MdHXKs基因主要分布在线粒体、细胞质和细胞核中。基因复制结果显示,全基因组复制(WGD)和片段复制在MdHXKs基因家族扩展中起着至关重要的作用。成对MdHXKs基因的ω值表明,该家族在苹果驯化过程中经历了强烈的纯化选择。此外,对五个亚家族进行了分类,并根据系统进化树分析确定了最近和最老的重复事件,并评估了不同HXKs亚家族之间的进化速率。此外,MdHXKs基因在四个源/库组织和五个苹果果实发育不同阶段的表达模式表明,MdHXKs基因在苹果果实发育和糖积累中起着至关重要的作用。本研究为今后阐明苹果果实发育过程中MdHXKs基因的生物学功能提供了理论基础。