期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Kiwifruit (Actinidia chinensis ‘Hongyang’) cytosolic ascorbate peroxidases (AcAPX1 and AcAPX2) enhance salinity tolerance in Arabidopsis thaliana
GUO Xiu-hong, HE Yan, ZHANG Yu, WANG Yi, HUANG Sheng-xiong, LIU Yong-sheng, LI Wei
Journal of Integrative Agriculture    2022, 21 (4): 1058-1070.   DOI: 10.1016/S2095-3119(21)63652-3
摘要144)      PDF    收藏

高等植物中,抗坏血酸过氧化物酶(APX)在清除活性氧的过程中发挥重要作用。中华猕猴桃因富含维生素C而成为具有重要经济和营养价值的园艺作物,其APX的相关研究及报道甚少。本研究分离鉴定出中华猕猴桃‘红阳’的两个细胞质APX基因(AcAPX1AcAPX2)。两个基因的时空表达模式研究发现,两者分别在叶和根中表达量相对较高。氯化钠处理猕猴桃的根可以提高二者的转录水平。利用GFP融合蛋白的亚细胞定位分析显示两个蛋白均定位于细胞质中。两个基因的his标签重组蛋白成功得以原核表达,并测定出酶活。最后,两个基因在拟南芥中过表达可在盐胁迫处理下提高维生素C和谷胱甘肽的含量。我们的研究揭示了中华猕猴桃细胞质APX可保护猕猴桃免受环境不良刺激。


参考文献 | 相关文章 | 多维度评价
2. Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana
ZHANG Ya-bin, TANG Wei, WANG Li-huan, HU Ya-wen, LIU Xian-wen, LIU Yong-sheng
Journal of Integrative Agriculture    2019, 18 (2): 417-427.   DOI: 10.1016/S2095-3119(18)62127-6
摘要313)      PDF(pc) (7925KB)(224)    收藏
Kiwifruit is an important fruit crop that is highly sensitive to environmental stresses, such as drought, heat, cold, water logging and phytopathogens.  Therefore it is indispensable to identify stress-responsive candidate genes in kiwifruit cultivars for the stress resistance improvement.  Here we report the isolation and characterization of a novel kiwifruit R1R2R3-MYB homolog (AcMYB3R) whose expression was induced by drought, salinity and cold stress.  In vitro assays showed that AcMYB3R is a nuclear protein with transcriptional activation activity by binding to the cis-element of the kiwifruit orthologue of G2/M phase-specific gene KNOLLE.  The Arabidopsis transgenic plants overexpressing AcMYB3R showed drastically enhanced tolerance to drought and salt stress.  The expressions of stress-responsive genes such as RD29A, RD29B, COR15A and RD22 were prominently up-regulated by ectopic expression of AcMYB3R.  Our study provides a valuable piece of information for functional genomics studies of kiwifruit and molecular breeding in improving stress tolerance for crop production.
参考文献 | 相关文章 | 多维度评价
3. SlSOM inhibits seed germination by regulating the expression of ABA/GA metabolic genes and SlABI5 in Solanum lycopersicum
SUN Xiao-chun, GAO Yong-feng, ZHANG Ning, LI Hui-rong, YANG Shu-zhang, LIU Yong-sheng
Journal of Integrative Agriculture    2015, 14 (2): 326-336.   DOI: 10.1016/S2095-3119(14)60859-5
摘要1815)      PDF    收藏
SOM encodes a nucleus-localized CCCH-type zinc finger protein and negatively regulates seed germination in Arabidopsis thaliana. We have previously demonstrated that ectopic expression of SlABI3, an important transcription factor in abscisic acid (ABA) signaling pathway, resulted in alteration of SlSOM expression patterns in both leaf and seed of tomato. In this study, we aimed to elucidate the function of tomato SlSOM in regarding to seed germination and seedling development. Here, we constructed SlSOM over-expression vector pBI121-SOM driven by CaMV 35S promoter, and the recombinant plasmid was incorporated into wild-type tomato by the method of Agrobacterium tumefaciens-mediated transformation. The result showed that over-expression of SlSOM conferred enhanced responses to exogenous ABA application during seed germination and seedling development. In addition, ectopic expression of SlSOM resulted in the alteration of expression level of ABA/GA (gibberellins) metabolic genes, such as SlABA1, SlCYP707A1, SlGA3ox2, and SlGA2ox4, in both leaf and seed. The ABA anabolic gene SlABA1 and the GA catabolic gene SlGA2ox4 were up-regulated while the ABA catabolic gene SlCYP707A1 and the GA anabolic gene SlGA3ox2 were down-regulated. Compared to wild type, the expression level of SlABI5 was increased by about 40–50% in transgenic seeds while adding exogenous ABA treatment. These results support the notion that SlSOM inhibits seed germination by regulating ABA/GA metabolic genes and SlABI5 expression in Solanum lycopersicum.
参考文献 | 相关文章 | 多维度评价
4. Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Genes in Response to Hormones and Stresses Treatments in Different Ecotypes of Rice (Oryza sativa)
ZHANG Peng, DENG Heng, XIAO Fang-ming , LIU Yong-sheng
Journal of Integrative Agriculture    2013, 12 (5): 737-748.   DOI: 10.1016/S2095-3119(13)60260-9
摘要1602)      PDF    收藏
Ser/Arg-rich (SR) genes encode proteins that play pivotal roles in both constitutive and alternative splicing of pre-mRNA. However, not much effort has been made to investigate the alternative splicing of their own pre-mRNA. In this study, we conducted comprehensive analyses of pre-mRNA splicing for 22 SR genes in three rice (Oryza sativa L.) ecotypes indica, japonica and javanica. Using different ecotypes we characterized the variations in expression and splicing patterns of rice SR genes in different tissues and at different developmental stages. In addition, we compared the divergence in expression and splicing patterns of SR genes from seedlings of different rice ecotypes in response to hormones application and environmental stresses. Our results revealed the complexity of alternative splicing of SR genes in rice. The splicing varies in different tissues, in different ecotypes, in response to stresses and hormones. Thus, our study suggested that SR genes were subjected to sophisticated alternative splicing although their encoding proteins were involved in the splicing process.
参考文献 | 相关文章 | 多维度评价
5. Functional Characterization of an Aldehyde Dehydrogenase Homologue in Rice
YANG Sheng-hui, NIU Xiang-li, LUO Di, CHEN Chang-dong, YU Xu, TANG Wei, LU Bao-rong, LIU Yong-sheng
Journal of Integrative Agriculture    2012, 12 (9): 1434-1444.   DOI: 10.1016/S1671-2927(00)8675
摘要1371)      PDF    收藏
The aldehyde dehydrogenase (ALDH) superfamily of NAD(P)+-dependent enzymes, in general, oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes to their corresponding carboxylic acids and play an essential role in detoxification of reactive oxygen species (ROS) accumulated under the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Oryza sativa, a homologue of ALDH gene (OsALDH22) was isolated and characterized. OsALDH22 is conserved in eukaryotes, shares high homology with the orthologs from aldehyde dehydrogenase subfamily ALDH22. The OsALDH22 encodes a protein of 597 amino acids that in plants exhibit high identity with the orthologs from Zea mays, Sorghum bicolor, Hordeum vulgare and Arabidopsis thaliana, respectively, and the conserved amino acid characteristics for ALDHs are present, including the possible NAD+ binding site (F-V-G-SP- G-V-G), the catalytic site (V-T-L-E-L-G-G-K) and the Cys active site. Semi-quantitative PCR and real-time PCR analysis indicates that OsALDH22 is expressed differentially in different tissues. Various elevated levels of OsALDH22 expression have been detected when the seedlings exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Transgenic rice plants overexpressing OsALDH22 show elevated stresses tolerance. On the contrary, downregulation of OsALDH22 in the RNA interference (RNAi) repression transgenic lines manifests declined stresses tolerance.
参考文献 | 相关文章 | 多维度评价