期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Molecular Mapping of a Stripe Rust Resistance Gene YrH9020a Transferred from Psathyrostachys huashanica Keng on Wheat Chromosome 6D
LIU Ze-guang, YAO Wei-yuan, SHEN Xue-xue, CHAO Kai-xiang, FAN Yu, LI Min-zhou, WANG Baotong, LI Qiang , JING Jin-xue
Journal of Integrative Agriculture    2014, 13 (12): 2577-2583.   DOI: 10.1016/S2095-3119(14)60755-3
摘要1872)      PDF    收藏
Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat throughout the world. H9020-1-6-8-3 is a translocation line originally developed from interspecific hybridization between wheat line 7182 and Psathyrostachys huashanica Keng and is resistant to most Pst races in China. To identify the resistance gene(s) in the translocation line, H9020-1-6-8-3 was crossed with susceptible cultivar Mingxian 169, and seedlings of the parents, F1, F2, F3, and BC1 generations were tested with prevalent Chinese Pst race CYR32 under controlled greenhouse conditions. The results indicated that there is a single dominant gene, temporarily designated as YrH9020a, conferring resistance to CYR32. The resistance gene was mapped by the F2 population from Mingxian 169/H9020-1-6-8-3. It was linked to six microsatellite markers, including Xbarc196, Xbarc202, Xbarc96, Xgpw4372, Xbarc21, and Xgdm141, flanked by Xbarc96 and Xbarc202 with at 4.5 and 8.3 cM, respectively. Based on the chromosomal locations of these markers and the test of Chinese Spring (CS) nullitetrasomic and ditelosomic lines, the gene was assigned to chromosome 6D. According to the origin and the chromosomal location, YrH9020a might be a new resistance gene to stripe rust. The flanking markers linked to YrH9020a could be useful for marker-assisted selection in breeding programs.
参考文献 | 相关文章 | 多维度评价
2. Genetics and Molecular Mapping of a High-Temperature Resistance Gene to Stripe Rust in Seeding-Stage in Winter Wheat Cultivar Lantian
MA Dong-fang, JING Jin-xue, HOU Dong-yuan, LI Qiang, ZHOU Xin-li, DU Jiu-yuan , LU Qing-lin
Journal of Integrative Agriculture    2013, 12 (6): 1018-1025.   DOI: 10.1016/S2095-3119(13)60322-6
摘要1670)      PDF    收藏
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F1, F2 and F2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
参考文献 | 相关文章 | 多维度评价
3. Genetic Analysis and Molecular Mapping of a Stripe Rust Resistance Gene YrH9014 in Wheat Line H9014-14-4-6-1
MA Dong-fang, HOU Lu, TANG Ming-shuang, WANG Hai-ge, LI Qiang , JING Jin-xue
Journal of Integrative Agriculture    2013, 12 (4): 638-645.   DOI: 10.1016/S2095-3119(13)60271-3
摘要1690)      PDF    收藏
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases in many wheat-growing regions of the world. The winter wheat translocation line H9014-14-4-6-1 has all stage resistance. To identify stripe rust resistance genes, the segregating populations were developed from the cross between H9014-14-4-6-1 and Mingxian 169 (a wheat cultivar susceptible to all Pst races identified in China). The seedlings of the parents and F1 plants, F2, F3 and BC1 generations were tested with Pst races under controlled greenhouse conditions. Two genes for resistance to stripe rust were identified, one dominant gene conferred resistance to SUN11-4, temporarily designated YrH9014 and the other recessive gene conferred resistance to CYR33. The bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with YrH9014. Seven polymorphic SSR markers were used to genotype the F2 population inoculated with SUN11-4. A linkage map was constructed according to the genotypes of seven SSR markers and resistance gene. The molecular map spanned 24.3 cM, and the genetic distance of the two closest markers Xbarc13 and Xbarc55 to gene locus was 1.4 and 3.6 cM, respectively. Based on the position of SSR marker, the resistance gene YrH9014 was located on chromosome arm 2BS. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xbarc13 indicated that YrH9014 was located on chromosome 2B. Based on chromosomal location, the reaction patterns and pedigree analysis, YrH9014 should be a novel resistance gene to stripe rust. This new gene and flanking markers got from this study should be useful for marker-assisted selection (MAS) in breeding programs for stripe rust.
参考文献 | 相关文章 | 多维度评价
4. Genetic Analysis and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene in Triticum aestivum-Haynaldia villosa Translocation Line V3
HOU Lu, MA Dong-fang, HU Mao-lin, HE Miao-miao, LU Yan , JING Jin-xue
Journal of Integrative Agriculture    2013, 12 (12): 2197-2208.   DOI: 10.1016/S2095-3119(13)60293-2
摘要1606)      PDF    收藏
Triticum aestivum-Hayaldia villosa translocation line V3 has shown effective all-stage resistance to the seven dominant pathotypes of Puccinia striiforms f. sp. tritici prevalent in China. To elucidate the genetic basis of the resistance, the segregating populations were developed from the cross between V3 and susceptible genotype Mingxian 169, seedlings of the parents and F2 progeny were tested with six prevalent pathotypes, including CYR29, CYR31, CYR32-6, CYR33, Sun11-4, and Sun11-11, F1 plants and F3 lines were also inoculated with Sun11-11 to confirm the result further. The genetic studied results showed that the resistance of V3 against CYR29 was conferred by two dominant genes, independently, one dominant gene and one recessive gene conferring independently or a single dominant gene to confer resistance to CYR31, two complementary dominant genes conferring resistance to both CYR32-6 and Sun11-4, two independently dominant genes or three dominant genes (two of the genes show cumulative effect) conferring resistance to CYR33, a single dominant gene for resistance to Sun11-11. Resistance gene analog polymorphism (RGAP) and simple-sequence repeat (SSR) techniques were used to identify molecular markers linked to the single dominant gene (temporarily designated as YrV3) for resistance to Sun11-11. A linkage map of 2 RGAP and 7 SSR markers was constructed for the dominant gene using data from 221 F2 plants and their derived F2:3 lines tested with Sun11-11 in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines of Chinese Spring with a RGAP marker RG1 mapped the gene on the chromosome 1B, and then the linked 7 SSR markers located this gene on the long arm of chromosome 1B. The linkage map spanned a genetic distance of 25.0 cM, the SSR markers Xgwm124 and Xcfa2147 closely linked to YrV3 with genetic distances of 3.0 and 3.8 cM, respectively. Based on the linkage map, it concluded that the resistance gene YrV3 was located on chromosome arm 1BL. Given chromosomal location, the reaction patterns and pedigree analysis, YrV3 should be a novel gene for resistance to stripe rust in wheat. These closely linked markers should be useful in stacking genes from different sources for wheat breeding and diversification of resistance genes against stripe rust.
参考文献 | 相关文章 | 多维度评价