期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 甘薯小象甲侵害诱导的(Z)-3-己烯基乙酯和别罗勒烯的昼夜节律性释放激活甘薯对甘薯小象甲的防御反应
XIAO Yang-yang, QIAN Jia-jia, HOU Xing-liang, ZENG Lan-ting, LIU Xu, MEI Guo-guo, LIAO Yin-yin
Journal of Integrative Agriculture    2023, 22 (6): 1782-1796.   DOI: 10.1016/j.jia.2023.02.020
摘要206)      PDF    收藏

甘薯小象虫(Cylas formicarius Fab.)(Coleoptera: Brentidae))是一种以甘薯(Ipomoea batatasL.Lam.Solanales: Convolvulaceae))为食的害虫,每年造成巨大的经济损失。然而,目前还没有找到安全有效的方法来保护甘薯免受甘薯小象甲的侵害。昆虫侵害诱导的植物挥发物(HIPVs)能激活多种防御的生物活性,但它们在甘薯中的形成和防御机制仍未清晰。为了明确甘薯中合成的防御性HIPVs,我们监测了虫侵害过程中甘薯挥发物的释放动态。通过稳定同位素示踪以及转录和代谢水平的分析,揭示了候选HIPVs的生物合成途径和调控因子。最后,对候选HIPVs的抗虫活性和防御机制进行了评估。本研究表明,(Z)-3-己烯基乙酯(z3HAC)和别罗勒烯由甘薯小象甲诱导合成,具有明显的昼夜节律。本文还首次报道了Ipomoea batatas ocimene synthaseIbOS)是别罗勒烯合成路径的基因。昆虫侵害造成的损伤促进了底物 (Z)-3-己烯醇的积累,并上调了IbOS的表达,从而分别导致z3HAC和别罗勒烯含量的增加。z3HAC和别罗勒烯气体分子能激活临近植株对甘薯小象甲的防御能力。本研究提供了关于甘薯防御性挥发物的形成、调控和信号转导机制的信息,对于建立有效的甘薯小象甲防治措施具有重要意义。

参考文献 | 相关文章 | 多维度评价
2. Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China
ZHOU Xing, LIAO Yu-lin, LU Yan-hong, Robert M. REES, CAO Wei-dong, NIE Jun, LI Mei
Journal of Integrative Agriculture    2020, 19 (8): 2103-2115.   DOI: 10.1016/S2095-3119(20)63206-3
摘要112)      PDF    收藏
Improved utilization of rice (Oryza sativa L.) straw and Chinese milk vetch (Astragalus sinicus L., vetch) has positive effects on rice production.  So far, few studies have investigated the productivity of vetch under different residue management practices in double-rice cropping system.  The effects of rice straw on the growth and nutrient accumulation of vetch across seven years (2011–2017) and the subsequent effects of rice straw and vetch on two succeeding rice crops in a vetch–rice–rice cropping system, with the vetch established by relay cropping, were examined.  The seven-year double-rice experiment consisted of the following treatments: (1) 100% chemical fertilizer (F-F100); (2) only vetch without chemical fertilizer (M-Con); (3) 80% chemical fertilizer plus vetch plus a low-cutting height (low-retained stubble) with the removal of straw (M-F80); (4) 80% chemical fertilizer plus vetch plus a low-cutting height with the retention of straw (M-F80-LR); (5) 80% chemical fertilizer plus vetch plus a high-cutting height (high-retained stubble) with the retention of straw (M-F80-HR); and (6) no fertilizer (F-Con).   The yields of the two rice crops after vetch were not affected by either the cutting height of stubble with retention of straw or by the management of straw (retention vs. removal) with low-cutting height of stubble.  The yields of the two rice crops after vetch were significantly higher for M-F80-HR than for M-F80-LR, but the relative contributions of the high-cutting height and straw retention to the higher rice yield could not be determined in this study.  The yield stability of the double-rice grain in M-F80-HR was also increased, as determined by a sustainable yield index.  Significant increases in vetch biomass and nutrient uptake were observed in the fertilized treatments during the rice season compared with the unfertilized treatments.  In M-F80-HR plots, improvements in the growing environment of the vetch by conserving soil water content were associated with the highest vetch biomass, nutrient uptake, and yield stability of vetch biomass.  These increased nutrient inputs partially replaced the demand for chemical fertilizer and stimulated the rice yields.  It can be concluded that retaining higher-cutting stubble residues with straw retention could be the best straw management practice for increasing the vetch biomass and nutrient use efficiency, thereby allowing utilization of high-cutting height with retention of straw and vetch to improve the stability of rice productivity in a double-rice cropping system.
相关文章 | 多维度评价
3. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system
ZHOU Xing, LU Yan-hong, LIAO Yu-lin, ZHU Qi-dong, CHENG Hui-dan, NIE Xin, CAO Wei-dong, NIE Jun
Journal of Integrative Agriculture    2019, 18 (10): 2381-1392.   DOI: 10.1016/S2095-3119(18)62096-9
摘要212)      PDF    收藏
The double-rice cropping system is a very important intensive cropping system for food security in China.  There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv).  We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha–1).  Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively).  It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve.  The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100.  However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%.  Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40.  After a certain amount of Mv input (22.5 Mg ha–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass.  Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0.  Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.
参考文献 | 相关文章 | 多维度评价
4. Effects of seven different companion plants on cucumber productivity, soil chemical characteristics and Pseudomonas community
CHANG Chun-ling, FU Xue-peng, ZHOU Xin-gang, GUO Mei-yu, WU Feng-zhi
Journal of Integrative Agriculture    2017, 16 (10): 2206-2214.   DOI: 10.1016/S2095-3119(17)61698-8
摘要788)      PDF    收藏
Companion cropping can influence cucumber productivity by altering soil chemical characteristics and microbial communities. However, how these alterations affect the growth of cucumber is still unknown. In this study, seven different plant species were selected as companion plants for testing their effects on cucumber productivity. The effects of different companion plants on changes in soil chemical properties such as electrical conductivity (EC) and contents of essential nutrients as well as the structure and abundance of the soil Pseudomonas community were evaluated. The results showed a higher cucumber yield in the wheat/cucumber companion system than that in the cucumber monocultured and other companion cropping systems. The lowest phosphorus (P) and potassium (K) contents in the soil were found in the cucumber monocultured system, and the highest NO3+-N and NH4+-N contents were observed in the rye/cucumber companion system. PCR-denaturing gradient gel electrophoresis (DGGE) and real-time PCR analysis showed that the trifolium/cucumber companion system increased the diversity of the soil Pseudomonas community, while the chrysanthemum/cucumber companion system increased its abundance. Interestingly, plant-soil feedback trials revealed that inoculating the soil of the wheat/cucumber companion system increased the growth of cucumber seedlings. In conclusion, the effects of different companion plants on cucumber productivity, soil chemical characteristics and the soil Pseudomonas community were different, and wheat was a more suitable companion plant for increasing cucumber productivity. In addition, the altered microbial community caused by companion cropping with wheat contributed to increased cucumber productivity.
参考文献 | 相关文章 | 多维度评价
5. Methylation profile of bovine Oct4 gene coding region in relation to three germ layers
ZHOU Xin-yu, LIU Liang-liang, JIA Wen-chao, PAN Chuan-ying
Journal of Integrative Agriculture    2016, 15 (3): 618-628.   DOI: 10.1016/S2095-3119(15)61100-5
摘要1750)      PDF    收藏
Previous studies have shown that octamer-binding transcription factor 4 (Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues (heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age (50–60 d) and advanced age (60–70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different (P<0.01) between any two of three germ layers in low age (<60 d), but kept steady of advanced age (P>0.05) (>60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm (cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age (P>0.05), but the result of endoderm (liver and lung) and mesoderm (heart) were on the contrary (P<0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th CpG-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers (P<0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.
参考文献 | 相关文章 | 多维度评价
6. Soil phosphorus dynamic, balance and critical P values in longterm fertilization experiment in Taihu Lake region, China
SHI Lin-lin, SHEN Ming-xing, LU Chang-yin, WANG Hai-hou, ZHOU Xin-wei, JIN Mei-juan, WU Tong-dong
Journal of Integrative Agriculture    2015, 14 (12): 2446-2455.   DOI: 10.1016/S2095-3119(15)61183-2
摘要1796)      PDF    收藏
Phosphorus (P) is an important macronutrient for plant but can also cause potential environmental risk. In this paper, we studied the long-term fertilizer experiment (started 1980) to assess the soil P dynamic, balance, critical P value and the crop yield response in Taihu Lake region, China. To avoid the effect of nitrogen (N) and potassium (K), only the following treatments were chosen for subsequent discussion, including: C0 (control treatment without any fertilizer or organic manure), CNK treatment (mineral N and K only), CNPK (balanced fertilization with mineral N, P and K), MNK (integrated organic manure and mineral N and K), and MNPK (organic manure plus balanced fertilization). The results revealed that the response of wheat yield was more sensitive than rice, and no significant differences of crop yield had been detected among MNK, CNPK and MNPK until 2013. Dynamic and balance of soil total P (TP) and Olsen-P showed soil TP pool was enlarged significantly over consistent fertilization. However, the diminishing marginal utility of soil Olsen-P was also found, indicating that high-level P application in the present condition could not increase soil Olsen-P contents anymore. Linear-linear and Mitscherlich models were used to estimate the critical value of Olsen-P for crops. The average critical P value for rice and wheat was 3.40 and 4.08 mg kg–1, respectively. The smaller critical P value than in uplands indicated a stronger ability of P supply for crops in this paddy soil. We concluded that no more mineral P should be applied in rice-wheat system in Taihu Lake region if soil Olsen-P is higher than the critical P value. The agricultural technique and management referring to activate the plant-available P pool are also considerable, such as integrated use of low-P organic manure with mineral N and K.
参考文献 | 相关文章 | 多维度评价
7. Pathotypes and Genetic Diversity of Chinese Collections of Elsinoë fawcettii Causing Citrus Scab
HOU Xin, HUANG Feng, ZHANG Tian-yuan, XU Jian-guo, Hyde D Kevin , LI Hong-ye
Journal of Integrative Agriculture    2014, 13 (6): 1293-1302.   DOI: 10.1016/S2095-3119(13)60522-5
摘要2316)      PDF    收藏
Two scab diseases are currently recognized on citrus: citrus scab, caused by Elsinoë fawcettii, and sweet orange scab, caused by E. australis. Although these pathogens are economically important, there is no molecular data on these species in China. Here we use internal transcribed spacer sequence data to report on host-specificity and genetic relationships among 46 isolates collected from the main citrus varieties grown across China. All strains isolated were E. fawcettii. Based on pathogenicity testing on 9 different citrus species, isolates were divided into 11 pathotypes (SM, FBHR, SJCR, SPOJCR, SR, SOJG, SPOJC, SRGC, Lemon and two unnamed pathotypes). SM is a new pathotype, and two isolates did not fit into any of the known pathotypes of E. fawcettii. Inter-simple sequence repeat (ISSR-PCR) assays separated the E. fawcettii isolates into 10 subgroups; the groupings basically corresponded to the pathogenicity test.
参考文献 | 相关文章 | 多维度评价
8. Natural Variation of Leaf Thickness and Its Association to Yield Traits in indica Rice
LIU Chuan-guang, ZHOU Xin-qiao, CHEN Da-gang, LI Li-jun, LI Ju-chang and CHEN You-ding
Journal of Integrative Agriculture    2014, 13 (2): 316-325.   DOI: 10.1016/S2095-3119(13)60498-0
摘要1779)      PDF    收藏
Leaf thickness is an important morphological trait in rice. Its association to the yield potential, as of now has not been documented because of the shortage of the equipment which could conveniently measure the leaf thickness in rice. In this study, the thickness of top three leaves of 208 cultivars had been determined by a nondestructive rice leaf thickness instrument for the research of the natural variation of leaves thickness and its association to yield traits in indica rice. The results showed that the flag leaf was the thickest, and the 2nd leaf was thicker than the 3rd leaf. Analysis of variance indicated the existence of wide genetic diversity of leaf thickness among the investigated indica rice genotypes. The tight correlation among the thicknesses of the top three leaves means that the leaf thickness traits share one genetic control system. Leaf thickness had a significant positive correlation with leaf length and a positive correlation with leaf width, indicated that thicker leaf was beneficial to increasing the single leaf area. The results of correlation analysis revealed that thicker leaf should be profitable to the leaf erection, higher numbers of grains per panicle and higher grains weight per panicle. However, the significantly negative correlation between leaf thickness and number of panicles per plant counteracted the profitability from increased grains weight per panicle, so that the correlations of the thicknesses of the top three leaves to yield and biomass were positive but not significantly. It has made great progress in the genetic improvement of leaves thickness in inbred indica rice breeding in Guangdong Province, China, since the 1990s.
参考文献 | 相关文章 | 多维度评价
9. Genetics and Molecular Mapping of a High-Temperature Resistance Gene to Stripe Rust in Seeding-Stage in Winter Wheat Cultivar Lantian
MA Dong-fang, JING Jin-xue, HOU Dong-yuan, LI Qiang, ZHOU Xin-li, DU Jiu-yuan , LU Qing-lin
Journal of Integrative Agriculture    2013, 12 (6): 1018-1025.   DOI: 10.1016/S2095-3119(13)60322-6
摘要1670)      PDF    收藏
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F1, F2 and F2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
参考文献 | 相关文章 | 多维度评价
10. Induction of Hypersensitive Response and Nonhost Resistance by a Cladosporium fulvum Elicitor CfHNNI1 is Dose-Dependent and Negatively Regulated by Salicylic Acid
XU You-ping, CHEN Hui-ying, ZHOU Xin, CAI Xin-zhong
Journal of Integrative Agriculture    2012, 12 (10): 1665-1674.   DOI: 10.1016/S1671-2927(00)8699
摘要1521)      PDF    收藏
Nonhost resistance is a phenomenon that enables plants to protect themselves against the majority of potential pathogens, and thus has a great potential for application in plant protection. We recently found that CfHNNI1 (for Cladosporium fulvum host and nonhost plant necrosis inducer 1) is an inducer of plant hypersensitive response (HR) and nonhost resistance. In this study, its functional mechanism was analyzed. CfHNNI1 was a single copy gene in C. fulvum genome. The functional ORF of the CfHNNI1 cDNA was ATG3-TAG780, which showed homology with genes encoding bZIP transcription factors. The functional ORF included in frame an inner one ATG273-TAG780, which was sufficient to induce HR in plants. CfHNNI1 induced plant HR in a dose-dependent manner. CfHNNI1-induced necrosis in NahG transgenic tomato plants was significantly stronger than that in their wild type controls. However, the necrosis in Nr and def1 tomato mutants was similar to that in their corresponding wild type plants. These data demonstrate that induction of HR and nonhost resistance by CfHNNI1 is negatively regulated by salicylic acid signalling pathway but independent of ethylene and jasmonic acid signalling pathways.
参考文献 | 相关文章 | 多维度评价