收获前穗发芽对小麦的品质和产量产生不利影响。籽粒颜色与小麦穗发芽抗性密切相关。然而,两者的遗传关系尚不清楚。本研究采用90K芯片对168个籽粒颜色和穗发芽抗性差异显著的小麦品种进行基因分型。基于混合线性模型的全基因组关联分析显示,67个SNP标记(分布于29个位点)与籽粒颜色显著关联,其中包括17个潜在的新位点,解释1.1-17.0%的表型变异。另外,100个SNP标记(分布于54个位点)与穗发芽抗性显著关联,其中包括31个潜在的新位点,解释1.1-14.7%的表型变异。随后,对籽粒颜色和穗发芽抗性的共定位位点Qgc.ahau-2B.3/Qphs.ahau-2B.4(2B)和穗发芽抗性位点Qphs.ahau-5B.4(5B)分别开发CAPS标记2B-448和5B-301。利用171份中国微核心种质进一步验证了上述2个CAPS标记与籽粒颜色和穗发芽抗性的相关性。此外,基于小麦公共表达数据库、转录组测序数据以及基因等位变异分析结果,将编码谷氧还蛋白glutaredoxin的TraesCS5B02G545100基因确定为Qphs.ahau-5B.4位点的潜在候选基因。进一步基于TraesCS5B02G545100基因CDS区域的SNP (T/C)变异,本文开发了一个CAPS标记CAPS-356。利用京411/红芒春21重组自交系(RILs)的高密度遗传连锁图谱检测到CAPS-356标记与一个新的穗发芽抗性QTL共定位,进一步支持了TraesCS5B02G545100是Qphs.ahau-5B.4位点的潜在候选基因的假设。本文结果为Qphs.ahau-5B.4的图位克隆和白皮抗穗发芽品种的培育提供了有价值的参考信息。
Ca2+离子在维持细胞壁以及细胞膜的完整性中具有重要作用,是植物生长和发育中必不可少的矿质营养元素之一。解析Ca2+离子在糖代谢和脂代谢中的作用能够为理解棉花纤维快速伸长阶段细胞膜和细胞壁的动态变化提供有意义的参考。本研究利用胚珠培养系统发现缺Ca2+会促进纤维和胚珠细胞的膨大,但同时也会诱导组织的褐化。RNA-seq差异表达基因分析发现缺Ca2+使细胞处于一个较高的氧化态,并且激活与糖代谢和脂代谢相关的基因的表达。尤其以糖酵解途径变化最为显著,其代谢途径中的9个酶相关的基因上调表达,缺Ca2+处理细胞中的葡萄糖含量显著下降,改变了糖酵解途径的流动。低K+能够恢复缺Ca2+诱导糖酵解途径相关基因的表达以及葡萄糖的含量。采用电喷雾电离串联质谱技术检测了不同Ca2+、K+离子处理条件下细胞中脂质组成分的动态变化。缺Ca2+处理细胞中自由脂肪酸(FA)、二酰甘油(DAG)和糖脂含量降低,三酰甘油(DAG)磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)、磷脂酰胆碱(PC)含量增加。低K+与缺Ca2+的互作信号能够恢复FA、磷脂、糖脂含量至正常水平,有效缓解缺Ca2+效应。本研究通过在转录和代谢水平的比较分析,揭示了Ca2+和K+信号互作在维持纤维快速伸长过程中糖酵解和脂代谢中发挥着重要作用。
本研究将XANES技术与化学连续浸提法相结合,探究土壤磷的形态和转化。10年的定位试验包括4个处理:100%化肥处理(4CN)、50%猪粪(2CN+2MN)、50%秸秆(2CN+2SN)、50%猪粪配合秸秆替代化肥处理(2CN+2MSN)。与单施化肥相比,有机替代施肥处理提高0−40 cm土层的活性磷含量,增幅为13.7-54.2%,主要组分是MgHPO4·3H2O和CaHPO4。有机替代施肥处理降低稳定性磷含量,羟基磷灰石(Ca5(PO4)3OH)是主要组分,其比例随着土壤深度的增加呈增加的趋势。秸秆施用(2CN+2SN和2CN+2MSN处理)提高中等活性磷含量,降低底土(60−100 cm)活性磷的含量。此外,施用秸秆显著降低总磷、可溶性无机磷(DIP)和颗粒磷的淋失量和浓度。可溶性无机磷是磷淋溶流失的主要形态,其与可溶性有机碳和NO3--N存在共迁移现象。偏最小二乘路径模型表明,施用秸秆通过增加中等活性磷和降低底土中的活性磷来减少磷的浸出。总体而言,施用秸秆有利于制定可持续的磷管理措施,因为其增加了上层土壤中的活性磷可供植物吸收利用,并减少磷的迁移和淋失。
本研究基于10年(2009-2019)的定位试验,探究有机肥/秸秆替代化肥模式对土壤磷库、磷酸酶和微生物活性的影响,并明确调节土壤磷转化特征的因素。4个施肥处理包括:100%化肥(4CN),50%的猪粪(2CN+2MN)、秸秆(2CN+2SN)、猪粪配合秸秆替代化肥(2CN+1MN+1SN)。有机替代处理显著提高芹菜和番茄的产量,较单施化肥处理分别提高6.9-13.8%和8.6-18.1%,其中,2CN+1MN+1SN处理的产量最高。有机肥/秸秆替代化肥模式持续10年后,与4CN处理相比,有机替代处理减少总磷和无机磷的累积;显著提高土壤速效磷、有机磷和微生物量磷;促进酸性和碱性磷酸单酯酶、磷酸二酯酶、植酸酶和微生物的活性。此外,偏最小二乘路径模型(PLS-PM)分析表明,土壤的C/P比显著并直接影响磷酸酶活性和微生物群落结构,进而对蔬菜产量和土壤磷库产生积极的影响。偏最小二乘(PLS)回归表明,丛枝菌根真菌对磷酸酶活性有积极影响。该研究结果表明,有机肥部分替代化肥施肥模式能够提高微生物活性,促进土壤磷的转化和有效性。综合考虑土壤磷库,微生物活动和蔬菜产量,猪粪与秸秆配合施用对于开发可持续的磷管理措施更为有效。
理解土壤有机碳(SOC)的稳定性对于农业生态系统中SOC循环及其动态变化至关重要。已有研究观察到施肥对土体土壤中有机碳稳定性的调节作用。然而,在农业生态系统中,施肥如何改变土壤团聚体中有机碳的稳定性尚不清楚。本研究旨在评估中国天津设施蔬菜施肥8年(化肥vs有机措施)后土壤团聚体中有机碳稳定性的变化。为评估土壤团聚体中有机碳的稳定性变化,本研究采用如下四种方法:改良的Walkley-Black方法(化学方法),13C NMR技术(光谱法),胞外酶测定(生物方法)和热重分析法(热力学方法)。通过湿筛方法将土壤分离成四部分:宏团聚体(> 2 mm),大团聚体(0.25–2 mm),微团聚体(0.053–0.25 mm)和粉粘粒(<0.053 mm)。结果表明,与单施化肥模式相比,有机措施可增加土壤团聚体中有机碳含量,并降低有机碳化学、光谱学、热力学和生物学稳定性。在土壤各团聚体中,有机碳含量在微团聚体中最高,其次为宏团聚体和大团聚体,粉粘粒中最低。同时,有机碳光谱学、热力学和生物学稳定性在粉粘粒中最高,其次是宏团聚体和大团聚体,微团聚体内有机碳稳定性最低。此外,由于土壤团聚体内有机碳化学性质与其他稳定性特征之间的相关性较弱,故推断改良的Walkley-Black方法不适用于评价土壤团聚体内有机碳的稳定性。我们的发现可在土壤团聚体水平上,为深入探索中国设施菜田不同施肥模式下有机碳特性的变化提供科学见解。
花生病害严重威胁花生生产,而通过种间杂交创制抗病材料是解决这一问题的有效途径。本研究利用花生栽培品种四粒红与野生种Arachis duranensis杂交,通过胚拯救和组织培养获得了种间杂种F1幼苗,细胞学和分子标记鉴定表明种间杂种F1为真杂种。进一步对扩繁F1幼苗进行秋水仙素处理,获得了F1种子,命名为Am1210。通过寡核苷酸荧光原位杂交鉴定、分子标记鉴定、表型鉴定和网斑病鉴定,我们发现:1)Am1210是Slh和ZW55种间杂交异源六倍体花生;2)蔓生、单粒或二粒荚果和红色种皮等性状相对于直立型、多粒荚果和褐色种皮为显性性状;3)Am1210的网斑病抗性与Slh相比显著提高,表明这种抗性来自于A. duranensis。此外,本研究还开发了69个显性和共显性分子标记,可用于种间杂种鉴定及未来A. duranensis染色体片段易位或渗入系的鉴定。