期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 长期有机无机配施提升稻田土壤肥力并增加水稻产量
GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min
Journal of Integrative Agriculture    2023, 22 (7): 2221-2232.   DOI: 10.1016/j.jia.2023.02.037
摘要249)      PDF    收藏

施肥是提升土壤肥力促进作物增产的有效措施,长期不同施肥对土壤培肥的效果差别很大,依托中国农科院红壤实验站双季稻田连续38年不同施肥定位试验,研究了7种不同施肥处理CK(不施肥);NPK(化学氮、磷、钾肥料);M(腐熟牛粪);NPKM(化学氮、磷、钾和牛粪);NPM(化学氮、磷和牛粪);NKM(化学氮、钾和牛粪);PKM(化学磷、钾和牛粪)对水稻产量、稻田土壤肥力与养分表观平衡的影响。结果表明,各处理水稻年均产量由高到低为NPKMNPMNKMPKMMNPKCK,范围在6214-11562 kg hm2长期有机无机配施处理(NPKMNPMNKMPKMNPK的增产率分别为:22.58%15.35%10.53%4.41%长期有机无机配施处理(NPKMNPMNKMPKM)的土壤有机碳、全氮、有效氮、速效钾含量均显著高于CKNPK,其中有机肥配施氮磷肥处理的NPKMNPMPKM土壤全磷和有效磷含量显著高于CKNPKNPKM处理的水稻年均产量11562 kg hm2、有机碳20.88 g kg-1)、土壤全氮2.30 g kg-1)、全磷0.95 g kg-1)、全钾22.5 g kg-1)、有效磷含量38.94 mg kg-1)均为各处理中最高,NKM处理土壤碱解氮含量(152.4mg kg-1)和速效钾含量(151.00 mg kg-1)为各处理最高。氮、磷施用量的增加导致土壤中氮、磷养分出现盈余,但NPKM处理相比其他处理能够有效降低盈余量;各处理土壤中钾素均表现为亏缺。相关性分析表明土壤SOCTNANTPAP含量均与水稻产量显著相关(P<0.05),相关系数分别为0.4280.4960.5180.5010.438。本研究表明,相比单施化肥,长期有机肥配施化肥通过提升土壤肥力,促进土壤养分平衡,显著增加水稻产量,其中有机肥配施氮磷钾肥(NPKM)对于土壤肥力和水稻产量的提升效果最好。

参考文献 | 相关文章 | 多维度评价
2. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil
GAO Song-juan, GAO Ju-sheng, CAO Wei-dong, ZOU Chun-qin, HUANG Jing, BAI Jin-shun, DOU Fu-gen
Journal of Integrative Agriculture    2018, 17 (08): 1852-1860.   DOI: 10.1016/S2095-3119(17)61901-4
摘要544)      PDF    收藏
Received  27 October, 2017    Accepted  11 January, 2018
参考文献 | 相关文章 | 多维度评价
3. Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China
GAO Song-juan CAO Wei-dong, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, SHIMIZU Katsuyoshi
Journal of Integrative Agriculture    2017, 16 (04): 959-966.   DOI: 10.1016/S2095-3119(16)61509-5
摘要609)      PDF    收藏
Dissimilatory Fe(III) reduction is an important process in the geochemical cycle of iron in anoxic environment.  As the main products of dissimilatory iron reduction, the Fe(II) species accumulation could indicate the reduction ability.  The effects of different green manures on Fe(III) reduction in paddy soil were explored based on a 31-year rice-rice-winter green manure cropping experiment.  Four treatments were involved, i.e., rice-rice-milk vetch (RRV), rice-rice-rape (RRP), rice-rice-ryegrass (RRG) and rice-rice-winter fallow (RRF).  Soils were sampled at flowering stage of milk vetch and rape (S1), before transplantation (S2), at tillering (S3), jointing (S4), and mature (S5) stages of the early rice, and after the harvest of the late rice (S6).  The contents of TFeHCl (HCl-extractable total Fe), Fe(II)HCl (HCl-extractable Fe(II) species) and Fe(III)HCl (HCl-extractable Fe(III) species) were measured.  The correlations among those Fe species with selected soil environmental factors and the dynamic characteristics of Fe(II)HCl accumulation were investigated.  The results showed that TFeHCl in RRF was significantly higher than those in the green manure treatments at most of the sampling stages.  Fe(II)HCl increased rapidly after the incorporation of green manures in all treatments and kept rising with the growth of early rice.  Fe(II)HCl in RRG was quite different from those in other treatments, i.e., it reached the highest at the S2 stage, then increased slowly and became the lowest one at the S4 and S5 stages.  Fe(III)HCl showed oppositely, and Fe(II)HCl/Fe(III)HCl performed similarly to Fe(II)HCl.  The maximum accumulation potential of Fe(II)HCl was significantly higher in RRF, while the highest maximum reaction rate of Fe(II)HCl accumulation appeared in RRG.  Significant correlations were found between the indexes of Fe(II)HCl accumulation and soil pH, oxidation-reduction potential (Eh) and total organic acids, respectively.  In together, we found that long-term application of green manures decreased the TFeHCl in red paddy soils, but promoted the ability of Fe(III) reduction, especially the ryegrass; Fe(II)HCl increased along with the growth of rice and was affected by soil conditions and environmental factors, especially the water and redox ability.
参考文献 | 相关文章 | 多维度评价
4. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China
GAO Song-juan, ZHANG Ren-gang, CAO Wei-dong, FAN Yuan-yuan, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, Shimizu Katsu-yoshi, Kristian Thorup-Kristensen
Journal of Integrative Agriculture    2015, 14 (12): 2512-2520.   DOI: 10.1016/S2095-3119(15)61230-8
摘要2230)      PDF    收藏
On the basis of a long-term (30 years) field experiment that involved four rotation systems, rice-rice-winter fallow (RRF), rice-rice-ryegrass (RRG), rice-rice-rape (RRP), and rice-rice-milk vetch (RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16S rRNA gene. The Chao1 richness and non-parametric Shannon’s index increased in all soil samples that received green manure treatments. The communities’ structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.
参考文献 | 相关文章 | 多维度评价
5. Effects of Long-Term Winter Planted Green Manure on Physical Properties of Reddish Paddy Soil Under a Double-Rice Cropping System
YANG Zeng-ping, XU Ming-gang, ZHENG Sheng-xian, NIE Jun, GAO Ju-sheng, LIAO Yu-lin , XIE Jian
Journal of Integrative Agriculture    2012, 12 (4): 655-664.   DOI: 10.1016/S1671-2927(00)8586
摘要2126)      PDF    收藏
Soil physical properties are important indicators of the potential for agricultural production. Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy soil (Fe-Typic Hapli-Stagnic Anthrosols) under a double cropping system. The common cropping pattern before the study was early-late rice-fallow (winter). The field treatments included rice-rice-fallow (R-R-WF), rice-rice-rape (R-R-RP), rice-rice-Chinese milk vetch (RR- MV), and rice-rice-ryegrass (R-R-RG). The rape, Chinese milk vetch and ryegrass were all incorporated as green manures 15 d before early rice transplanting during the following year. The soil bulk density in all green manure treatments was significantly reduced compared with the winter fallow treatment. Soil porosity with green manure applications was significantly higher than that under the winter fallow. The green manure treatments had higher 0.25-5 mm water stable aggregates and aggregates stabilities in the plow layer (0-15 cm depth) compared with the fallow treatment. The mean weight diameter (MWD) and normalized mean weight diameter (NMWD) of aggregates in the green manure treatment were larger than that with the winter fallow. Soil given green manure retained both a higher water holding capacity in the plow layer soil, and a larger volume of moisture at all matric potentials (-10, -33 and -100 kPa). We conclude that the management of double-rice fields in southern central China should be encouraged to use green manures along with chemical fertilizers to increase SOC content, improve soil physical properties and soil fertility.
参考文献 | 相关文章 | 多维度评价